151 |
Filtro de partículas adaptativo para o tratamento de oclusões no rastreamento de objetos em vídeos / Adaptive MCMC-particle filter to handle of occlusions in object tracking on videosOliveira, Alessandro Bof de January 2008 (has links)
O rastreamento de objetos em vídeos representa um importante problema na área de processamento de imagens, quer seja pelo grande número de aplicações envolvidas, ou pelo grau de complexidade que pode ser apresentado. Como exemplo de aplicações, podemos citar sua utilização em áreas como robótica móvel, interface homem-máquina, medicina, automação de processo industriais até aplicações mais tracionais como vigilância e monitoramento de trafego. O aumento na complexidade do rastreamento se deve principalmente a interação do objeto rastreado com outros elementos da cena do vídeo, especialmente nos casos de oclusões parciais ou totais. Quando uma oclusão ocorre a informação sobre a localização do objeto durante o rastreamento é perdida parcial ou totalmente. Métodos de filtragem estocástica, utilizados para o rastreamento de objetos, como os Filtros de Partículas não apresentam resultados satisfatórios na presença de oclusões totais, onde temos uma descontinuidade na trajetória do objeto. Portanto torna-se necessário o desenvolvimento de métodos específicos para tratar o problema de oclusão total. Nesse trabalho, nós desenvolvemos uma abordagem para tratar o problema de oclusão total no rastreamento de objetos utilizando Filtro de Partículas baseados em Monte Carlo via Cadeia de Markov (MCCM) com função geradora de partículas adaptativa. Durante o rastreamento do objeto, em situações onde não há oclusões, nós utilizamos uma função de probabilidade geradora simétrica. Entretanto, quando uma oclusão total, ou seja, uma descontinuidade na trajetória é detectada, a função geradora torna-se assimétrica, criando um termo de “inércia” ou “arraste” na direção do deslocamento do objeto. Ao sair da oclusão, o objeto é novamente encontrado e a função geradora volta a ser simétrica novamente. / The object tracking on video is an important task in image processing area either for the great number of involved applications, or for the degree of complexity that can be presented. How example of application, we can cite its use from robotic area, machine-man interface, medicine, automation of industry process to vigilance and traffic control applications. The increase of complexity of tracking is occasioned principally by interaction of tracking object with other objects on video, specially when total or partial occlusions occurs. When a occlusion occur the information about the localization of tracking object is lost partially or totally. Stochastic filtering methods, like Particle Filter do not have satisfactory results in the presence of total occlusions. Total occlusion can be understood like discontinuity in the object trajectory. Therefore is necessary to develop specific method to handle the total occlusion task. In this work, we develop an approach to handle the total occlusion task using MCMC-Particle Filter with adaptive sampling probability function. When there is not occlusions we use a symmetric probability function to sample the particles. However, when there is a total occlusion, a discontinuity in the trajectory is detected, and the probability sampling function becomes asymmetric. This break of symmetry creates a “drift” or “inertial” term in object shift direction. When the tracking object becomes visible (after the occlusion) it is found again and the sampling function come back to be symmetric.
|
152 |
Uma abordagem bayesiana para mapeamento de QTLs em populações experimentais / A Bayesian approach for mapping QTL in experimental populationsAndréia da Silva Meyer 03 April 2009 (has links)
Muitos caracteres em plantas e animais são de natureza quantitativa, influenciados por múltiplos genes. Com o advento de novas técnicas moleculares tem sido possível mapear os locos que controlam os caracteres quantitativos, denominados QTLs (Quantitative Trait Loci). Mapear um QTL significa identificar sua posição no genoma, bem como, estimar seus efeitos genéticos. A maior dificuldade para realizar o mapeamento de QTLs, se deve ao fato de que o número de QTLs é desconhecido. Métodos bayesianos juntamente com método Monte Carlo com Cadeias de Markov (MCMC), têm sido implementados para inferir conjuntamente o número de QTLs, suas posições no genoma e os efeitos genéticos . O desafio está em obter a amostra da distribuição conjunta a posteriori desses parâmetros, uma vez que o número de QTLs pode ser considerado desconhecido e a dimensão do espaço paramétrico muda de acordo com o número de QTLs presente no modelo. No presente trabalho foi implementado, utilizando-se o programa estatístico R uma abordagem bayesiana para mapear QTLs em que múltiplos QTLs e os efeitos de epistasia são considerados no modelo. Para tanto foram ajustados modelos com números crescentes de QTLs e o fator de Bayes foi utilizado para selecionar o modelo mais adequado e conseqüentemente, estimar o número de QTLs que controlam os fenótipos de interesse. Para investigar a eficiência da metodologia implementada foi feito um estudo de simulação em que foram considerados duas diferentes populações experimentais: retrocruzamento e F2, sendo que para ambas as populações foi feito o estudo de simulação considerando modelos com e sem epistasia. A abordagem implementada mostrou-se muito eficiente, sendo que para todas as situações consideradas o modelo selecionado foi o modelo contendo o número verdadeiro de QTLs considerado na simulação dos dados. Além disso, foi feito o mapeamento de QTLs de três fenótipos de milho tropical: altura da planta (AP), altura da espiga (AE) e produção de grãos utilizando a metodologia implementada e os resultados obtidos foram comparados com os resultados encontrados pelo método CIM. / Many traits in plants and animals have quantitative nature, influenced by multiple genes. With the new molecular techniques, it has been possible to map the loci, which control the quantitative traits, called QTL (Quantitative Trait Loci). Mapping a QTL means to identify its position in the genome, as well as to estimate its genetics effects. The great difficulty of mapping QTL relates to the fact that the number of QTL is unknown. Bayesian approaches used with Markov Chain Monte Carlo method (MCMC) have been applied to infer QTL number, their positions in the genome and their genetic effects. The challenge is to obtain the sample from the joined distribution posterior of these parameters, since the number of QTL may be considered unknown and hence the dimension of the parametric space changes according to the number of QTL in the model. In this study, a Bayesian approach was applied, using the statistical program R, in order to map QTL, considering multiples QTL and epistasis effects in the model. Models were adjusted with the crescent number of QTL and Bayes factor was used to select the most suitable model and, consequently, to estimate the number of QTL that control interesting phenotype. To evaluate the efficiency of the applied methodology, a simulation study was done, considering two different experimental populations: backcross and F2, accomplishing the simulation study for both populations, considering models with and without epistasis. The applied approach resulted to be very efficient, considering that for all the used situations, the selected model was the one containing the real number of QTL used in the data simulation. Moreover, the QTL mapping of three phenotypes of tropical corn was done: plant height, corn-cob height and grain production, using the applied methodology and the results were compared to the results found by the CIM method.
|
153 |
Bayesian surface smoothing under anisotropyChakravarty, Subhashish 01 January 2007 (has links)
Bayesian surface smoothing using splines usually proceeds by choosing the smoothness parameter through the use of data driven methods like generalized cross validation. In this methodology, knots of the splines are assumed to lie at the data locations. When anisotropy is present in the data, modeling is done via parametric functions.
In the present thesis, we have proposed a non-parametric approach to Bayesian surface smoothing in the presence of anisotropy. We use eigenfunctions generated by thin-plate splines as our basis functions. Using eigenfunctions does away with having to place knots arbitrarily, as is done customarily. The smoothing parameter, the anisotropy matrix, and other parameters are simultaneously updated by a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampler. Unique in our implementation is model selection, which is again done concurrently with the parameter updates.
Since the posterior distribution of the coefficients of the basis functions for any given model order is available in closed form, we are able to simplify the sampling algorithm in the model selection step. This also helps us in isolating the parameters which influence the model selection step.
We investigate the relationship between the number of basis functions used in the model and the smoothness parameter and find that there is a delicate balance which exists between the two. Higher values of the smoothness parameter correspond to more number of basis functions being selected.
Use of a non-parametric approach to Bayesian surface smoothing provides for more modeling flexibility. We are not constrained by the shape defined by a parametric shape of the covariance as used by earlier methods. A Bayesian approach also allows us to include the results obtained from previous analysis of the same data, if any, as prior information. It also allows us to evaluate pointwise estimates of variability of the fitted surface. We believe that our research also poses many questions for future research.
|
154 |
UNSUPERVISED LEARNING IN PHYLOGENOMIC ANALYSIS OVER THE SPACE OF PHYLOGENETIC TREESKang, Qiwen 01 January 2019 (has links)
A phylogenetic tree is a tree to represent an evolutionary history between species or other entities. Phylogenomics is a new field intersecting phylogenetics and genomics and it is well-known that we need statistical learning methods to handle and analyze a large amount of data which can be generated relatively cheaply with new technologies. Based on the existing Markov models, we introduce a new method, CURatio, to identify outliers in a given gene data set. This method, intrinsically an unsupervised method, can find outliers from thousands or even more genes. This ability to analyze large amounts of genes (even with missing information) makes it unique in many parametric methods. At the same time, the exploration of statistical analysis in high-dimensional space of phylogenetic trees has never stopped, many tree metrics are proposed to statistical methodology. Tropical metric is one of them. We implement a MCMC sampling method to estimate the principal components in a tree space with the tropical metric for achieving dimension reduction and visualizing the result in a 2-D tropical triangle.
|
155 |
Processus ponctuels marqués pour l'extraction automatique de caricatures de bâtiments à partir de modèles numériques d'élévationOrtner, Mathias 05 October 2004 (has links) (PDF)
Cette thèse se place dans un cadre de reconstruction urbaine et propose un corpus algorithmique pour extraire des formes simples sur les Modèles Numériques d'Elévation. Ce type de données décrit le relief d'une zone urbaine par une grille régulière de points à chacun desquels est associée une information de hauteur. Les modèles utilisés reposent sur l'utilisation de processus ponctuels marqués. Il s'agit de variables aléatoires dont les réalisations sont des configurations d'objets géométriques. Ces modèles permettent d'introduire des contraintes sur la forme des objets recherchés dans une image ainsi qu'un terme de régularisation modélisé par des interactions entre les objets. Une énergie peut être associée aux configurations d'objets et la configuration minimisant cette énergie trouvée au moyen d'un recuit-simulé couplé à un échantillonneur de type Monte Carlo par Chaîne de Markov à sauts réversibles (RJMCMC). Nous proposons quatre modèles pour extraire des caricatures de bâtiments à partir de descriptions altimétriques de zones urbaines denses. Chaque modèle est constitué par une forme d'objet, une énergie d'attache aux données et une énergie de régularisation. Les deux premiers modèles permettent d'extraire des formes simples (rectangles) en utilisant une contrainte d'homogénéité pour l'un et une détection des discontinuités pour l'autre. Le troisième modèle modélise les bâtiments par une forme polyhédrique. Le dernier modèle s'intéresse à l'apport d'une coopération entre des objets simples. Les algorithmes obtenus, automatiques, sont évalués sur des données réelles fournies par l'IGN (MNE Laser et optiques de différentes qualités).
|
156 |
Une approche Monte Carlo par Chaînes de Markov pour la classification des potentiels d'action. <br />Application à l'étude des corrélations d'activité des cellules de Purkinje.Delescluse, Matthieu 25 November 2005 (has links) (PDF)
Pour être réellement exploitables, les données d'enregistrements extracellulaires multiunitaires doivent faire l'objet d'un traitement préalable visant à isoler les activités neuronales individuelles qui les constituent: le spike-sorting. Ce travail de thèse est une contribution au développement et à la réalisation d'une méthode automatique de spike-sorting implémentant un algorithme de Monte Carlo par Chaînes de Markov (MCMC). La méthode proposée permet de tenir compte, en plus de la forme des potentiels d'action (PAs), de l'information fournie par leurs temps d'émission pour réaliser la classification. Cette utilisation de l'information temporelle rend possible l'identification automatique de neurones émettant des PAs de formes non stationnaires. Elle améliore aussi grandement la séparation de neurones aux PAs de formes similaires. Ce travail méthodologique à débouché sur la création d'un logiciel libre accompagné de son manuel d'utilisateur.<br /><br />Cette méthode de spike-sorting a fait l'objet d'une validation expérimentale sur des populations de cellules de Purkinje (PCs), dans les tranches de cervelet de rat. Par ailleurs, l'étude des trains de PAs de ces cellules fournis par le spike-sorting, n'a pas révélé de corrélations temporelles significatives en régime spontané, en dépit de l'existence d'une inhibition commune par les interneurones de la couche moléculaire et d'une inhibition directe de PC à PC. Des simulations ont montré que l'influence de ces inhibitions sur les relations temporelles entre les trains de PCs était trop faible pour pouvoir être détectée par nos méthodes d'analyse de corrélations. Les codes élaborés pour l'analyse des trains de PAs sont également disponibles sous la forme d'un second logiciel libre.
|
157 |
Approche bayésienne en séparation de sources. Applications en imagerieSnoussi, Hichem 29 September 2003 (has links) (PDF)
Ce travail de thèse consiste à développer l'approche bayésienne en séparation de sources. Mes contributions sont à la fois méthodologiques et algorithmiques illustrées par des applications en imagerie satellitaire et en cosmologie observationnelle. - Au niveau méthodologique: 1. nous avons proposé une modélisation pertinente des sources. L'aspect hiérarchique de ce modèle est bien adapté à la structure cachée naturelle du problème de séparation de sources. 2. Nous avons étudié le problème de dégénérescence du maximum de vraisemblance dans le cas vectoriel et dans le contexte de séparation de sources. 3. Nous avons proposé une approche originale pour la sélection d'a priori avec les outils de la géométrie différentielle. - Au niveau Algorithmique: 1. Nous avons proposé des algorithmes de séparation et de ségmentation dont le principe est l'exploitation de la non stationnarité dans le domaine temporel, spatial, spectral, temps-fréquence... 2. Nous avons mis en oeuvre la solution bayésienne avec une impémentation parallèle de l'échantillonneur de Gibbs ainsi que d'autres approximations stochastiques de l'EM. 3. Ces algorithmes sont illustrés par une application en imagerie satellitaire et une application en cosmologie observationnelle. Enfin, j'ouvre des perspectives théoriques sur la dualité de l'approche bayésienne et de l'approche informationnelle dans le cadre de la séparation et de la ségmentation conjointes des sources.
|
158 |
Aide à la décision dans la gestion des parcs de compteurs d'eau potablePasanisi, Alberto 01 1900 (has links) (PDF)
La métrologie des compteurs d'eau se dégrade au long de leur vie opérationnelle, entraînant, pour la plupart des compteurs actuellement utilisés en France, une sous-estimation du volume d'eau facturé. Ce phénomène est source de problèmes pour les distributeurs d'eau: il se traduit en un manque à gagner non négligeable et détermine une situation d'inégalité entre les usagers. En outre, une réglementation, de plus en plus exigeante, obligera bientôt les distributeurs à limiter la proportion d'appareils à métrologie imparfaite en dessous d'une valeur fixée. La planification des renouvellements des compteurs est, par conséquent, un problème complexe qui demande la mise en place d'une stratégie optimale. N'importe quelle méthode de planification nécessite la connaissance préliminaire de la métrologie des compteurs en conditions réelles d'exploitation. Le but de cette thèse est de fournir des éléments utiles à la mise en place des règles de gestion optimale adoptées par la Compagnie Générale des Eaux. L'étude de la dégradation de la métrologie se fait avec un modèle dynamique (markovien) à quatre états discrets à métrologie de plus en plus dégradée. Les calculs d'inférence sont réalisés dans un cadre bayésien avec des techniques MCMC (Markov Chain Monte Carlo). Cette méthode d'estimation est une alternative, plus que valide, aux procédures basées sur la recherche du maximum de la vraisemblance sous contraintes. Finalement, on montre que le modèle est capable de fournir des prévisions directement utilisables par les décideurs: l'estimation du sous-comptage et de la probabilité de non-conformité, en fonction de l'âge, de l'agressivité du site et de la consommation annuelle.
|
159 |
Ajustements Bayésiens, application à physique du quark top au LHCClément, Benoit 22 June 2012 (has links) (PDF)
Le document discute la problematique de la propagation d'incertitudes mutliples dans l'analyse bayesienne d'une combinaison de processus de Poisson. Une méthode originale d'échantillonnage partiel de la densité a posteriori par chaine de Makov est présenté puis appliquée à la recherche de quarks tops célibataire au LHC. Une dernière partie utilise la même méthode pour sonder la sensibilité furure d'ATLAS à certains paramètres de nouvelle physique.
|
160 |
Méthodes probabilistes pour l'analyse exploratoire de données textuellesRigouste, Loïs 11 1900 (has links) (PDF)
Nous abordons le problème de la classification non supervisée de documents par des méthodes probabilistes. Notre étude se concentre sur le modèle de mélange de lois multinomiales avec variables latentes thématiques au niveau des documents. La construction de groupes de documents thématiquement homogènes est une des technologies de base de la fouille de texte, et trouve de multiples applications, aussi bien en recherche documentaire qu'en catégorisation de documents, ou encore pour le suivi de thèmes et la construction de résumés. Diverses propositions récentes ont été faites de modèles probabilistes permettant de déterminer de tels regroupements. Les modèles de classification probabilistes peuvent également être vus comme des outils de construction de représentations numériques synthétiques d'informations contenues dans le document. Ces modèles, qui offrent des facilités pour la généralisation et l'interprétation des résultats, posent toutefois des problèmes d'estimation difficiles, dûs en particulier à la très grande dimensionnalité du vocabulaire. Notre contribution à cette famille de travaux est double: nous présentons d'une part plusieurs algorithmes d'inférence, certains originaux, pour l'estimation du modèle de mélange de multinomiales; nous présentons également une étude systématique des performances de ces algorithmes, fournissant ainsi de nouveaux outils méthodologiques pour mesurer les performances des outils de classification non supervisée. Les bons résultats obtenus par rapport à d'autres algorithmes classiques illustrent, à notre avis, la pertinence de ce modèle de mélange simple pour les corpus regroupant essentiellement des documents monothématiques.
|
Page generated in 0.0281 seconds