1 |
壓力測試-利率下降對保單責任準備金之影響 / An investigation on stress testing - the effect of law interest rates on liability reserves梁皓緯, Liang, Hao-Wei Unknown Date (has links)
本研究之目的在以利用不同之準備金利率來計算保險責任準備金,探討利率對於保單責任準備金之影響。以20年限期繳付、被保險人為30歲男性的終身壽險為例,當責任準備金利率下降時,保單責任準備金將在整個契約有效期間皆增加,而增加的幅度將隨著契約年度的增加而增加,至約19-20年增加幅度最大,而後隨著時間的經過增加的幅度再慢慢減少。我們觀察在不同被保險人性別下,改變繳費期間之敏感度分析,發現在利率不變之下繳費期間越長,則責任準備金最高差額之年齡也較高。
|
2 |
長壽風險對保單責任準備金之影響-以增額型終身壽險為例 / The effect of longevity risk on reserves – based on increasing whole life insurance陳志岳 Unknown Date (has links)
近年隨著油價、物價上漲所導致的通貨膨脹風險,壽險業者以增額型終身壽險來吸引潛在消費者。另外,由於醫療技術的進步,使得死亡率逐年改善,因此將造成保單在設計時可能將遭受到長壽風險的影響。本篇文章的主要目的即探討長壽風險對於保單責任準備金的影響,並以增額型終身壽險作為本文主要分析標的。首先建構死亡率模型(Lee-Carter模型),用來配適並模擬死亡率,接著探討增額型終身壽險在各保單年度下之現金流量以及責任準備金的提存,進一步再引進不同的死亡率來探討其現金流量分佈情形與責任準備金之提存。本文研究結果發現,在保險公司未採用遞迴方式計算保費時,當繳費期間愈短、複利利率愈高以及投保年齡愈低時,保險公司所面臨之長壽風險愈大,其後在帶入各種不同死亡率模型,發現死亡改善率愈高,保險公司所面臨之長壽風險愈大,而保險公司在提存責任準備金時,並未考慮到死亡改善率的部分,此對保險公司的財務健全將造成隱憂,本文於此部分建議監理機關透過法規(RBC)的制訂,調整準備金提存的係數,以降低長壽風險對保險公司財務之衝擊。
關鍵字:長壽風險、死亡率模型、增額型終身壽險、保單責任準備金、增額準備金、Lee-Carter Model以及RBC制度。 / With the improvement of medical technology, the life expectancy around the world is increasing year by year during the past decade. Therefore, the increasing whole life insurance policy is popular during these years because its benefits are escalating with time and policyholders think they could gain more benefits when they live longer. Like annuity policies, the increasing whole life insurance could also suffer from the longevity risk, which may have enormous impact on the financial statements of insurers.
The purpose of this paper is to discuss the impact of longevity risk on reserves, based on increasing whole life insurance policy. First, we construct Lee-Carter model to fit and simulate mortality rate and assume different mortality improvements from the 2002 Taiwan Standard Ordinary Experience Mortality Table (2002TSO) for further comparisons. And then, we construct a simple model to analyze the cash flows of the increasing whole life policies based on the mortality rates we observed.
By constructing a simple model and simulation, we find that if the insurance company does not correctly estimate longevity risk, the insurance company will lose money on the increasing whole life policies. In order to mitigate the insufficiency of life insurers for the increasing whole life policies, we try to provide some supervision suggestion from the view of the risk-based capital (RBC) requirements. We calculate the factor of insurance risk (C2) of RBC requirements because this factor represents the surplus needed to provide for excess claims over expected, both from random fluctuations and from inaccurate pricing for future levels of claims.
Keywords: longevity risk, increasing whole life insurance policy, Lee-Carter model, risk-based capital (RBC).
|
3 |
壽險公司責任準備金涉險值之估計 / The Estimation of Value at Risk for the Reserve of Life/Health Insurance Company詹志清, Chihching Chan Unknown Date (has links)
中文摘要
在本文中,我們依據模擬的風險因子變動,包括死亡率風險,利率風險,解約率風險以及模型的參數風險,來估計第一個保單年度的期末責任準備金之涉險值 (Value at Risk)。本文中,雖僅計算生死合險保單的準備金之涉險值,但是本文所提供的方法以及計算過程可以很容易的應用到其它險種,甚至配合資產面的考量來計算保險公司盈餘(Surplus)的涉險值,進而作為清償能力的監測系統。
本文的特點包括下列幾項:第一,本文提供了一個不同於傳統短期間(Short Horizon)的涉險值計算方式,來估計壽險商品的保單責任準備金(Policy Reserve)的涉險值。第二,本文利用生命表來估計死亡率風險所造成的涉險值。第三,我們利用隨機利率模型來捕捉隨機利率對於責任準備金涉險值的影響。第四,我們考慮解約率對於責任準備金涉險值的影響,值得注意的是,在我們的解約率模型中,引入的利率對於解約率的影響。第五,本文亦考慮風險因子模型當中的參數風險對於涉險值的影響。最後,我們利用無母數方法計算出涉險值的信賴區間,而信賴區間的估計在模擬過程當中尤其重要,因為它可以用來決定模擬次數的多寡。
本文包含六節:第一節為導論。第二節為計算死亡率風險的責任準備金涉險值。第三節是計算加上利率風險後責任準備金涉險值的變化。第四節則為加上解約率後對涉險值的影響。第五節為計算涉險值的信賴區間。第六節是我們的結論以及後續研究的方向探討。
本文包含六節:第一節為導論。第二節為計算死亡率風險的責任準備金涉險值。第三節是計算加上利率風險後責任準備金涉險值的變化。第四節則為加上解約率後對涉險值的影響。第五節為計算涉險值的信賴區間。第六節是我們的結論以及後續研究的方向探討。 / ABSTRACT
In this paper, we estimate the VAR of life insurer's terminal reserve of the first policy year by the simulated risk factors, including mortality risk, interest rate risk, lapse rate risk, and estimation risks, of future twenty years. We found that the difference between the VAR under the mortality risk and the interest rate risk is very large because interest rate is a stochastic process but not mortality rate. Thus, the dispersion of interest rate is more then mortality rate. In addition, the VAR will reduce a lot after adding the impact of lapses because the duration of the reserve reduced. If we neglect the impact of lapses to VAR, we will overestimate the VAR significantly.
The features of this paper are as follows. First, we provide an approach to measure the VAR of a life insurer's reserve, and it is rather different from traditional VAR with short horizons. Second, we use mortality table to estimate the VAR of a life insurer's reserve. Third, we use stochastic interest rate model to capture the effect of random interest rate to the VAR of a life insurer's reserve. Fourth, we relate the future cash outflows to interest rate and produce a reasonable estimator of VAR. Fifth, we consider the effect of estimation errors to the VAR of a life insurer's reserve. Last, we calculate the confidence interval of the VAR estimates of the policy reserves.
This paper consists of six sections. The first section is an introduction. In the second section, we present the method used to estimate the variance of the mortality rate and then estimate the VAR of reserves from these variances. In the third section, we explore how to use stochastic interest rate model to estimate the reserve's VAR and the VAR associated with the parameter risk of the interest rate model. In the fourth section, we analyze the contribution of the lapse rate risk and the parameter risk of the lapse rate model to the reserve's VAR. We also analyze the relative significance of the interest rate risk, the lapse rate risk, and the mortality rate risk in terms of their marginal contributions to the VAR of an insurer's reserves in this section. In the fifth section, we calculate the confidence intervals of the VAR estimates discussed in the previous sections. The last section is the conclusion section containing our conclusions and discussions about potential future researches.
|
Page generated in 0.0188 seconds