1 |
加權指數與個別股操作方法之探討何振銘 Unknown Date (has links)
本文最主要的探討要點分成兩部分,第一部分是利用多種總體經濟指標及技術指標印證過去18年台股的走勢,從而找出一種對加權指數較具勝率的操作方式。
第二部分則是各類股與個別股的比較,先找出經過多年的考驗在還原權息之後市值仍能不斷創新高的個股,再與取樣數做比較,發覺符合條件的股票比例不到8%。
經由第一及第二部分可以得到以下結論:
1. 經過實際的印證後所的到的結論顯示和加權指數的漲跌關係最密切的數據則為3個月的移動平均量,在利用3個月的移動平均量轉折並配合9月KD值作為買賣的參考依據,實證之後所得到的報酬率相當高,顯示這個方法的可用性相當高。
2. 證實台灣股市中長期投資而獲利可以超越定存的股票並不多,尤其是 少數個股成為股王之後的報酬率並不理想,這也是多數投資人長抱股票為何不能賺錢的重要原因。其次則是取各類股中獲利仍可維持成長的個股,就其過去6年內股價漲幅與獲利的成長幅度做比較,可找出為何市場比較偏愛電子股的原因。
最後的結論與投資建議中,提出台股選股已重於選市的看法,並整理出在台灣股市中選股的五種方法,包括新興的產業,災難受益公司,成長型的公司,具領導地位的世級公司在本益比10倍附近以及價值型且股價嚴重低估的的公司。只要能慎選買點,將會獲得不錯的報酬。
|
2 |
台灣地區匯率與股票價格關係之研究錢盡忠, GIAN, JIN-ZHONG Unknown Date (has links)
年來新台幣節節升值,從74年底的40:1,快速升值至76年底的28.55:
1,而同一時刻,台灣證券交易所之股價發行量加權指數亦開始向上攀升,從74年
中的六百餘點竄升至76年中的四千七百餘點的歷史記錄,然後才開始走下坡。影響
股價的因素很多,匯率之變動與經濟活動息息相關,是一項重要的市場因素,因此不
由得令人關切匯率與股價彼此間的關係究竟為何﹖
從總體經濟的層面而言,匯率是一國重要的經濟指標,匯率的升貶從而影響到一國的
進出口貿易,貨幣供給額及利率,這些因素對於企業之經營均有莫大影響,以致於反
映在股票價格上。但從財務學的觀點言之,多數研究均已證實資本市場之半強式效率
假設,亦即所有已公開的資訊均已反映在股價上,從而研究匯率之變化並無法因此在
資本市場上獲得超額利潤。本研究乃欲藉實證之程序,探討匯率之變動是否能解釋股
價之變動。
利用時間數列迴歸分析,以匯率或匯率之變動量為自變數,而以股價或股價之變動量
為因變數,建立迴歸模式,研究期間長達九年,自民國68年起至76年止。研究結
果顯示匯率對股價之當期解釋能力,或次一期及次兩期之解釋能力均很低,變動量之
間的關係亦是如此,表示匯率並不能充分解釋股價之變動,符合資本市場之半強式效
率假設。但由迴歸方程式中的迴歸係數,致性地為負值來看,長期間下匯率貶值(新
台幣升值)會造成股價的上漲,則又與總體經濟的理論若合符節。至於為什麼匯率貶
值會使股價上漲,則牽涉到我國的整體經濟結構,以及上市公司的型態,一般而言,
上市公司為多角化的公司,較能承受匯率貶值的衝擊,而使對公司的淨影響為有利。
|
3 |
應用類神經網路方法於金融時間序列預測之研究--以TWSE台股指數為例 / Using Neural Network approaches to predict financial time series research--The example of TWSE index prediction張永承, Jhang, Yong-Cheng Unknown Date (has links)
本研究考慮重要且對台股大盤指數走勢有連動影響的因素,主要納入對台股有領頭作用的美國三大股市,那斯達克(NASDAQ)指數、道瓊工業(Dow Jones)指數、標準普爾500(S&P500)指數;其他對台股緊密連動效果的國際股票市場,香港恆生指數、上海證券綜合指數、深圳證券綜合指數、日經225指數;以及納入左右國際經濟表現的國際原油價格走勢,美國西德州原油、中東杜拜原油和歐洲北海布蘭特原油;在宏觀經濟因素方面則考量失業率、消費者物價指數、匯率、無風險利率、美國製造業重要指標的存貨/銷貨比率、影響貨幣數量甚鉅的M1B;在技術分析方面則納入多種重要的指標,心理線 (PSY) 指標、相對強弱(RSI) 指標、威廉(WMS%R) 指標、未成熟隨機(RSV) 指標、K-D隨機指標、移動平均線(MA)、乖離率(BIAS)、包寧傑%b和包寧傑帶狀寬度(BandWidth%);所有考量因素共計35項,因為納入重要因子比較多,所以完備性較高。
本研究先採用的贏者全拿(Winner-Take-All) 競爭學習策略的自組織映射網路(Self-Organizing Feature Maps, SOM),藉由將相似資料歸屬到已身的神經元萃取出關聯分類且以計算距離來衡量神經元的離散特徵,對於探索大量且高維度的非線性複雜特徵俱有優良的因素相依性投射效果,將有利於提高預測模式精準度。在線性擬合部分則結合倒傳遞(Back-Propagation, BP)、Elman反饋式和徑向基底函數類網路(Radial-Basis-Function Network, RBF)模式為指數預測輸出,並對台股加權指數隔日收盤指數進行預測和評量。而在傳統的Elman反饋式網路只在隱藏層存在反饋機制,本研究則在輸入層和隱藏層皆建立反饋機制,將儲存在輸入層和隱藏層的過去時間資訊回饋給網路未來參考。在徑向基底函數網路方面,一般選取中心聚類點採用隨機選取方式,若能有效降低中心點個數,可降低網路複雜度,本研究導入垂直最小平方法以求取誤差最小的方式強化非監督式學習選取中心點的能力,以達到網路快速收斂,提昇網路學習品質。
研究資料為台股指數交易收盤價,日期自2001/1/2,至2011/10/31共2676筆資料。訓練資料自2001/1/2至2009/12/31,共2223筆;實證測試資料自2010/1/4至2011/10/31,計453個日數。主要評估指標採用平均相對誤差(AMRE)和平均絕對誤差 (AAE)。在考慮因子較多的狀況下,實證結果顯示,在先透過SOM進行因子聚類分析之後,預測因子被分成四個組別,分別再透過BP、Elman recurrent和RBF方法進行線性擬合,平均表現方面,以RBF模式下的四個群組因子表現最佳,其中RBF模式之下的群組4,其AMRE可達到0.63%,最差的AMRE則是群組1,約為1.05%;而Elman recurrent模式下的四組群組因子之ARME則介於1.01%和1.47%之間;其中預測效果表現最差則是BP模式的預測結果。顯示RBF具有絕佳的股價預測能力。最後,在未來研究建議可以運用本文獻所探討之其他數種類神經網路模式進行股價預測。 / In this study, we considering the impact factors for TWSE index tendency, mainly aimed at the three major American stock markets, NASDAQ index, Dow Jones index, S&P 500, which leading the Taiwan stock market trend; the other international stock markets, such as the Hong Kong Hang-Seng Index, Shanghai Stock Exchange Composite Index, Shenzhen Stock Exchange Composite Index, NIKKEI 225 index, which have close relationship with Taiwan stock market; we also adopt the international oil price trend, such as the West Texas Intermediate Crude Oil in American, the Dubai crude oil in Middle Eastern, North Sea Brent crude oil in European, which affects international economic performance widely; On the side of macroeconomic factors, we considering the Unemployed rate, Consumer Price Index, exchange rate, riskless rate, the Inventory to Sales ratio which it is important index of American manufacturing industry, and the M1b factor which did greatly affect to currency amounts; In the part of Technical Analysis index, we adopt several important indices, such as the Psychology Line Index (PSY), Relative Strength Index (RSI), the Wechsler Memory Scale—Revised Index (WMS%R), Row Stochastic Value Index (RSV), K-D Stochastics Index, Moving Average Line (MA), BIAS, Bollinger %b (%b), Bollinger Band Width (Band Width%);All factors total of 35 which we have considered the important factor is numerous, so the integrity is high.
In this study, at first we adopt the Self-Organizing Feature Maps Network which based on the Winner-Take-All competition learning strategy, Similar information by the attribution to the body of the neuron has been extracted related categories and to calculate the distance to measure the discrete characteristics of neurons, it has excellent projection effect by exploring large and complex high-dimensional non-linear characteristics for all the dependency factors , would help to improve the accuracy of prediction models, would be able to help to improve the accuracy of prediction models. The part of the curve fitting combine with the back-propagation (Back-Propagation, BP), Elman recurrent model and radial basis function network (Radial-Basis-Function Network, RBF) model for the index prediction outputs, forecast and assessment the next close price of Taiwan stocks weighted index. In the traditional Elman recurrent network exists only one feedback mechanism in the hidden layer, in this study in the input and hidden layer feedback mechanisms are established, the previous information will be stored in the input and hidden layer and will be back to the network for future reference. In the radial basis function network, the general method is to selecting cluster center points by random selection, if we have the effectively way to reduce the number of the center points, which can reduces network complexity, in this study introduce the Orthogonal Least Squares method in order to obtain the smallest way to strengthen unsupervised learning center points selecting ability, in order to achieve convergence of the network fast, and improve network learning quality.
Research data for the Trading close price of Taiwan Stock Index, the date since January 2, 2001 until September 30, 2011, total data number of 2656. since January 2, 2001 to December 31, 2009 a total number of 2223 trading close price as training data; empirical testing data, from January 4, 2010 to September 30, 2011, a total number of 433. The primary evaluation criteria adopt the Average Mean Relative Error (AMRE) and the Average Absolute Error (AAE). In the condition for consider more factors, the empirical results show that, by first through SOM for factor clustering analysis, the prediction factors were divided into four categories and then through BP, Elman recurrent and RBF methods for curve fitting, at the average performance , the four group factors of the RBF models get the best performance, the group 4 of the RBF model, the AMRE can reach 0.63%, the worst AMRE is group 1, about 1.05%; and the four groups of Elman recurrent model of ARME is between 1.01% and 1.47%; the worst prediction model is BP method. RBF has shown excellent predictive ability for stocks index. Finally, the proposal can be used in future studies of the literatures that we have explore several other methods of neural network model for stock trend forecasting.
|
Page generated in 0.0707 seconds