1 |
以AIC與卡方適合度檢定檢驗關聯結構之探討李鴻明 Unknown Date (has links)
楚於資訊爆炸的時代,金融市場上彼此間更是息息相關的,有牽一髮而動全身的可能性。。因此在探討各種金融商品投資報酬率的分配時,只用單維分配函數來推估已經是得不到足夠的資訊,所以將考慮對資料配適關聯結構。
關聯結構有許多不同的種類變化,然而何種關聯結構才是最適合資料型態呢?為了瞭解二元的關聯結構是否配適的適當,將以AIC與卡方適合度檢定的方法進行關聯結構的檢驗。
首先以蒙地卡羅模擬法進行檢驗,藉由模擬觀察此兩種方法的結論是否能夠相信。最後以台灣股票市場中水泥類股、鋼鐵類股以及營造建材類股三類股兩兩間的當日交易資料的投資報酬率進行配適關聯結構,投資報酬率計算的頻率分為半點、整點以及兩點三種。配適出的結果為水泥類股、鋼鐵類股以及營造建材類股三類股間兩兩服從t關聯結構,自由度為三,除了頻率為半小時的水泥類與營造建材類以及鋼鐵類與營造建材類兩組。
|
2 |
卡方適合度檢定檢驗關聯結構之研究-以台灣股票市場日內資料為例官振民 Unknown Date (has links)
在資料變數間的邊際分配不再是常態,變數間的相依性不只是線性關係時,將考慮直接對資料配適關聯結構。爲了瞭解一個二元的關聯結構的配適是否適當,則以卡方適合度檢定的方式來檢驗。首先以蒙地卡羅法做模擬,觀察此方法的以最小卡方估計值的參數估計、顯著水準和檢定力等,藉此瞭解以卡方適合度檢定法檢定後所做的結論是否能相信。最後以台灣股票市場中電子類股、電機機械類股、汽車類股和其他類股這四種類股兩兩間的日內資料分別半點資料、整點資料和兩點資料對Gauss 關聯結構、t 關聯結構、Clayton 關聯結構、Frank 關聯結構和Gumbel 關聯結構等五種關聯結構模型以卡方適合度檢定法檢驗其配適的狀況,最後在這五種單一參數關聯結構的配適中,以t 關聯結構自由度在3和4時表現最好。
|
3 |
卡方檢定在三維關聯結構下之模擬分析與實證研究─以台股原物料族群股價為例賴宗暘 Unknown Date (has links)
隨著關聯結構方法在1999年開始被應用在財務資料上,對金融市場風險的衡量,可說是一大改革。Dobric & Schmid (2005) Communications in Statistics: Simulation and Computation, 34,pp.1053-1068,提出利用卡方檢定來檢驗二維資料間關聯結構,本文延伸其方法探討卡方檢定應用於三維關聯結構之表現。
首先本文在模擬研究部份,考慮邊際分配未知的情況下,用卡方適合度檢定來檢驗以蒙地卡羅模擬方法模擬Normal關聯結構、t關聯結構、Clayton關聯結構、Frank關聯結構以及Gumbel關聯結構等五種關聯結構。得知隨著切割數的增加,參數估計越來越不精確;而在理論上檢定統計量當樣本夠大時會近似卡方分配,故檢定統計量平均數(變異數)應近似其卡方分配自由度(2*自由度),但隨著切割數增加,表現越不理想;至於檢定力部份,在討論不同情形之下都有不錯的表現。
再之採用台灣股票集中市場中水泥類、食品類、造紙類、橡膠類、運輸類五類股族群,對其日內時間四種頻率:1/9天、1/6天、1/3天、1天的股價報酬率,進行五種關聯結構配適,找出最能夠描述股價日內資料分佈的關聯結構,實證得知上述四種頻率的股價報酬率,皆呈現t關聯結構其自由度為4之配置為最合適。
|
4 |
三維關聯結構之卡方檢定探討樣本數與相關係數之研究程士峰 Unknown Date (has links)
隨著全球金融市場的整體化,配適財務資料的模型是依個相當有價值的研究。因此當關連結構方法應用在財務資料上,對金融市場風險的衡量,可說是一大改革。Dobric & Schmid (2005) Communications in Statistics: Simulation and Computation, 34,pp.1053-1068,提出利用卡方檢定來檢驗二維資料間關聯結構,本文延伸其方法探討卡方檢定應用於三維關聯結構之表現。
首先本文在模擬研究部份,考慮邊際分配未知的情況下,用卡方適合度檢定來檢驗以蒙地卡羅模擬方法模擬Normal關聯結構、t關聯結構、Clayton關聯結構、Frank關聯結構以及Gumbel關聯結構等五種關聯結構。得知隨著切割數的增加,參數估計越來越不精確;而樣本大小的設定也影響著切割數,隨著樣本數的減少會使得參數估計和檢定力較不能掌握。
實證方面採用台灣股票集中市場中五大類股:電機(機械)類、電器(電纜)類、鋼鐵類、汽車類、電子類,對其日內時間四種頻率:1/9天、1/6天、1/3天、的股價報酬率,配適五種不同的關聯結構,找出最能夠描述股價日內資料分佈的關聯結構,實證得知上述四種頻率的股價報酬率,皆呈現t關聯結構其自由度為4之配置為最合適。
|
5 |
應用AIC法與卡方檢定檢驗二維關聯結構賴耐嘉 Unknown Date (has links)
處於資訊變化迅速的時代,金融市場上彼此間更是息息相關的,因此在探討各種金融商品投資報酬率的分配時,只用單維分配函數來推估已經是得不到足夠的資訊,在此本研究使用關聯結構(copula)來推估投資報酬率的分配情形。
首先,透過蒙地卡羅(MC)模擬方法來探討Akaike Information Criterion (以下採"AIC"簡稱)法與卡方適合度檢定法檢驗關聯結構是否適合,進行檢驗隨機選取的資料是否服從其相對應的關聯結構。
本文共模擬五種關聯結構,分別為常態、t、Gumbel、Clayton、Frank關聯結構,其中AIC法在邊際分配為已知或未知下,在不同的參數設定值下,在所配適的關聯結構下所得到的AIC值最小,說明AIC法適合檢驗資料的關聯結構。另外卡方檢定法中,在已知邊際分配與未知邊際分配拒絕虛無假設的比例皆很接近設定的顯著水準,表示卡方適合度檢定法適合檢驗資料的關聯結構,而參數估計值的部分,當分割的格子越大,其所相對應的參數估計值會越不準確,且與設定的參數差距有擴大的現象。
最後以台灣股票市場中,內需產業較有影響的水泥類﹑鋼鐵類﹑營造建材類三種類股彼此間的投資報酬率進行配適關聯結構,投資報酬率時點的選擇以一天1/2天,1/3天,1/6天,1/9天,1/18天,1/27天,1/54天作為分割,分割成八種時點作為探討比較,其中AIC法所得到的結果皆以配適t關聯結構較為恰當,再以AIC法的結果,採用卡方t關聯結構,自由度採用3跟4輔助檢驗,然而卡方在5﹑10﹑15分鐘全部拒絕,在30分鐘後,除了鋼鐵與營建類的配對在30﹑45分鐘仍然拒絕,其他的部分都與AIC法符合。
關鍵字:關聯結構、蒙地卡羅(MC)模擬、AIC法、卡方適合度檢定、投資報酬率
|
6 |
列聯表中離群細格偵測探討 / Detecting Outlying Cells in Cross-Classified Tables施苑玉, Shi, Yuan Yu Unknown Date (has links)
在處理列聯表(Contingency table)資料時,一般我們常用卡方適合度檢定(chi-squared goodess-of-fit test)來判定模式配適的好壞。如果這個檢定是顯著的,則意謂著配適的模式並不恰當,我們則希望進一步探討可能的原因何在。這其中的一個可能原因是資料中存在所謂的離群細格(outlying cell),這些細格的觀測次數和其他細格的觀測次數呈現某種不一致的現象。
在以往的文獻中,離群細格的偵測,通常藉由不同定義的殘差(residual)作為工具,進而衍生出各種不同的偵測方法。只是,這些探討基本上僅局限於二維列聯表的情形,對於高維度的列聯表,並沒有作更進一步的詮釋。Brown (1974)提出一個逐步偵測的方法,可依序找出所有可能的離群細格,直到近似獨立(quasi-independence)的模式假設不再顯著為止。但是我們認為他所引介的這個方法所牽涉的計算程序似乎過於繁複,因此藉由簡化修改計算過程,我們提供了另一種離群細格偵測的方法。依據模擬實驗的結果發現,本文所介紹的方法與Brown的方法作比較只有過之而無不及。此外我們也探討了應用此種方法到三維列聯表的可行性和可能遭遇到的困難。 / Chi-squared goodness-of-fit tests are usually employed to test whether a model fits a contingency table well. When the test is significant, we would then like to identify the sources that cause significance. The existence of outlying cells that contribute heavily to the test statistic may be one of the reasons.
Brown (1974) offered a stepwise criteria for detecting outlying cells in two-way con-tingency tables. In attempt to simplify the lengthy calculations that are required in Brown's method, we suggest an alternative procedure in this study. Based on simulation results, we find that the procedure performs reasonably well, it even outperforms Brown's method on several occasions. In addition, some extensions and issues regarding three-way contingency tables are also addressed.
|
7 |
以卡方適合度檢定檢驗二維關聯結構之研究范宜鴻 Unknown Date (has links)
關聯結構(Copula)這個字最早由Sklar(1959)以法文所提出,在邊際分配未知的假設下,透過關聯結構的特性,可以容易的建立聯合機率分配,所以關聯結構的觀念廣泛應用在財務領域中。對於資料在配適關聯結構的同時,要如何知道哪種關聯結構函數是最符合資料型態的分配呢?為解決這個問題,本文中參考Dobric and Schmid (2005)所提出的方法--卡方適合度檢定,來看資料配適關聯結構函數是否配適的恰當。所以本文的研究重點就是在利用卡方適合度檢定來探討各類股間日報酬率資料配適關聯結構的情形。在5種不同關聯結構(Normal關聯結構、t關聯結構、Clayton 關聯結構、Frank關聯結構、Gumbel關聯結構),利用蒙地卡羅模擬方法,來做關聯結構在卡方適合度檢定之模擬,以及檢定力曲線。在檢定統計量、參數估計、顯著水準的估計都還不錯,只有當切割數越大時參數估計會和設定值差異較大。從檢定力曲線可看出這些檢定的檢定力都很好,代表有足夠能力能去辨別出分配的差異性。實證的部份,從台灣上市公司選取4個內需概念股報酬率的日內資料。結果可看出在Normal、Clayton、Frank、Gumbel這4個關聯結構,是不適合用來描述實際報酬的日資料。而當t關聯結構自由度較小時來描述資料型態是表現的不錯。
|
8 |
三維關聯結構之卡方檢定-以台股之建築相關類股之日內股價為例姚漢威 Unknown Date (has links)
現今在處理財務資料的過程當中,通常對於資料的分配特性是未知的,然而
透過關聯結構可以較容易的得知資料的聯合機率分配,但要如何得知資料是最
適合配適何種關聯結構呢?為了解決這個問題,Dobric & Schmid
(2005, "Testing Goodness of Fit for Parametric Families of
Copulas ---Application to Financial Data",Communication in
Statistics: Simulation and Computation, 34,pp.1053-1068) 提
出了針對在二維關聯結構的方法---卡方適合度檢定,來檢視資料配適多種關
聯結構是否恰當。本篇論文延續著 Dobric & Schmid(2005)所提出的方
法,把資料配適二維關聯結構的情形推廣到三維上面來探討,並檢視類股間日
漲跌幅資料配適關聯結構的情形。模擬方面,利用蒙地卡羅模擬法,探討五種
三維關聯結構中卡方適合度檢定的模擬結果以及檢定力曲線的表現。實證方
面,以台灣股票市場為例,選取四個建築相關類股的日內 (Intra- day)股
價漲跌幅資料,檢定實際資料配適五種關聯結構的情形,並進一步了解實際資
料配適何種關聯結構最恰當,從實證研究得知可以發現實際資料配適
Normal、 Clayton、 Frank 和 Gumbel 關聯結構的表現並不佳,唯獨在
配適 t關聯結構最恰當,尤其是自由度為3或4的t關聯結構表現較佳。
關鍵字: 關聯結構,卡方適合度檢定,Normal 關聯結構,Clayton 關聯結
構,t關聯結構,Frank 關聯結構,Gumbel 關聯結構,日內(Intra-day)
價漲跌幅
|
9 |
模糊卡方適合度檢定 / Fuzzy Chi-square Test Statistic for goodness-of-fit林佩君, Lin,Pei Chun Unknown Date (has links)
在資料分析上,調查者通常需要決定,不同的樣本是否可被視為來自相同的母體。一般最常使用的統計量為Pearson’s 統計量。然而,傳統的統計方法皆是利用二元邏輯觀念來呈現。如果我們想要用模糊邏輯的概念來做樣本調查,此時,使用傳統 檢定來分析這些模糊樣本資料是否仍然適當?透過這樣的觀念,我們使用傳統統計方法,找出一個能處理這些模糊樣本資料的公式,稱之為模糊 。結果顯示,此公式可用來檢定,模糊樣本資料在不同母體下機率的一致性。 / In the analysis of research data, the investigator often needs to decide whether several independent samples may be regarded as having come from the same population. The most commonly used statistic is Pearson’s statistic. However, traditional statistics reflect the result from a two-valued logic concept. If we want to survey sampling with fuzzy logic concept, is it still appropriate to use the traditional -test for analysing those fuzzy sample data? Through this concept, we try to use a traditional statistic method to find out a formula, called fuzzy , that enables us to deal with those fuzzy sample data. The result shows that we can use the formula to test hypotheses about probabilities of various outcomes in fuzzy sample data.
|
Page generated in 0.0198 seconds