• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

画像データに基づく上皮組織力学のモデル構築およびパラメータ推定法

荻田, 豪士 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(生命科学) / 甲第24269号 / 生博第483号 / 新制||生||64(附属図書館) / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 上村 匡, 教授 安達 泰治, 教授 今吉 格 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
2

非抽樣誤差之推測與控制之研究

馬德人, Ma, De-Ren Unknown Date (has links)
第一章為緒論, 將偏誤的影響作一討論。第二章為無反應誤差, 研究其效應並利用訪 查法以減少誤差。第三章為測量誤差, 先建立模型, 將均方誤分解, 再討論測量誤差 對於均方誤各分量之影響, 最後為測量誤差之研究方法—貫穿子樣本法及比較法。第 四章為敏感問題, 敏感問題甚易造成非抽樣誤差, 故建立隨機反應法及無關問題法 , 以推定母體之比例或平均數。第五章為實證分析, 將第四章的方法應用於實際問題— 求台北市內兒科醫師每月平均收入, 並和傳統直接問題法比較分析, 最後作檢討與改 進。第六章為結論, 將上述各種方法予以綜合說明並加以補充。
3

混合線性模型推測問題之研究

洪可音 Unknown Date (has links)
當線性模型中包含隨機效果項時,若將之視為固定效果或直接忽略,往往會造成嚴重的推測偏差,故應以混合線性模型為架構。若模式中只包含一個隨機效果項,則模式中有兩個變異數成份,若包含 個隨機效果項,則模式中有 個變異數成份。本論文主要在介紹至少兩個變異數成份時固定效果及隨機效果線性組合的最佳線性不偏推測量(BLUP),及其推測區間之推導與建立。然而BLUP實為變異數比率的函數,若變異數比率未知,而以最大概似法(Maximum Likelihood Method)或殘差最大概似法(Residual Maximum Likelihood Method)估計出變異數比率,再代入BLUP中,則得到的是經驗最佳線性不偏推測量(EBLUP)。至於推測區間則與EBLUP的均方誤有關,本論文先介紹如何求算其漸近不偏估計量,再介紹EBLUP之推測誤差除以 後,其自由度的估算方法,據以建構推測區間。 / When random effects are contained in the model, if they are treated as fixed effects or ignore, then it may result in serious prediction bias. Instead, mixed linear model is to be considered. If there is one source of random effects, then the model has two variance components, while it has variance components, if the model contains random effects. This study primarily presents the derivation of the best linear unbiased predictor (BLUP) of a linear combination of the fixed and random effects, and then the conduction of the prediction interval when the model contains at least two variance components. However, BLUP is a function of variance ratios. If the variance ratios are unknown, we can replace them by their maximum likelihood estimates or residual maximum likelihood estimates, then we can get empirical best linear unbiased predictor (EBLUP). Because prediction interval is relating to the mean squared error (MSE) of EBLUP, so the study first introduces how to get its approximate unbiased estimator, m<sub>a</sub> , then introduces how to evaluate the degrees of freedom of the ratio of the prediction error for the EBLUP and m<sub>a</sub> <sup>1/2</sup> , in order to use both of them to establish the prediction interval.

Page generated in 0.0413 seconds