• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

赴大陸投資廠商生產效率之實證分析 / Frontier Production Functions and Technical Efficiency: An Empirical Applications of Investment in China

王英湘, Wang, Yin Hsiang Unknown Date (has links)
研究經濟學的目的之一在於探討如何將有限的資源做最有效的利用。資源配置最適,就是經濟效率的達成,效率可以說是經濟理論的精義,但就實證層面來說,效率的慨念卻是相當抽象而模糊。直到Farrell(1957)提出衡量效率的概念,使得效率得以數據化,在往後的學者不斷地深入探討與研究,使生產邊界方法廣泛的運用在產業分析之中。在諸多衡量技術效率方式中,隨機性邊界方法較符合實際社會情形,所以本論文即根據Aigner, Lovell and Schmidt(1977)估計隨機性邊界與生產效率之計量方法,分別設定誤差項為不同的截斷性半常態分配配以及設定Cobb-Douglas和CES兩種生產函數形態,分別估計生產邊界,並加以檢定,再就適當的函數模型估計平均技術效率值與個別廠商的技術效率值,接著討論影響技術效率差異之因素。本文從向投審會登記投資大陸之台商的台灣工廠與大陸工廠挑選電子、機械、紡織、成衣四種產業為實證對象。   根據本論文實證研究之結果,重要結論可歸納如下:   第一,我們應用Aigner, et.al(1977)之隨機性生產邊界模型,衡量電子、機械業及紡織、成衣業兩類產業四組資料之生產邊界。不同誤差項分配之假設下,檢定結果顯示,不能拒絕u在0處截斷之虛無假設。不同生產函數型態設定的生產邊界亦無明顯差異,檢定結果以Cobb-Douglas生產函數較合適。   第二,在生產邊界估計上,電子、機械業及紡織、成衣業兩地的工廠,兩類產業大陸工廠的勞動產出彈性都大於台灣母公司,同時兩類產業大陸工廠的規模報酬也都高於台灣母公司,這說明台商為何紛紛前往大陸投資。   第三,比較台商之台灣工廠與大陸工廠,結果顯示無論電子機械業或紡織成衣業,台灣工廠有極高的效率,平均效率皆在90%以上。兩類產業的大陸工廠的效率則較差,約在40%到950%之間。影響台灣工廠效率的主要因素來自人為無法控制之隨機因素,而大陸工廠的低效率主要來自人為技術因素。   第四,我們利用Jondrow, et al(1982)提出的條件期望值公式進一步計算各別廠商的技術效率。根據各別廠商的效率分配,我們發現台灣母公司皆十分集中,大陸工廠則頗為分散,紡織成衣業甚至有九家廠商在20%以下。顯示該產業應加以注意生產的過程與管理。   最後,本文探討影響廠商技術效率差異的因素,我們發現最重要的變數是廠商規模。兩類產業的台灣工廠及大陸工廠,廠商規模都與生產效率有明顯的正向關係,規模愈大,效率愈高。設廠年齡對四組資料都呈負向影響。資本勞動比則除了台灣的電子機械業以外,都是負向關係。是否投入研究開發及產業區別,則沒有明顯的關係。在大陸工廠方面,設廠地區電子機械業設廠在沿海地區春效率較高,紡織成衣業則以內陸地區效率較高。在投資形態方面,紡織成衣業者以獨資企業效率較高,電子機械業則相反,顯示後者在選擇投資型態時,主要考慮的是如內銷方面等其他因素較不著重效率。
2

產業部門能源需求與碳排放之驅動力與效率的實證研究 / Empirical Analysis on Driving Forces and Technical Efficiency of Energy Demand, Economic Growth and Carbon Emission

單珮玲, Shan, Pei Ling Unknown Date (has links)
本研究包括3個研究議題。第1個議題旨為估算不同部門別(包括農業、工業、服務業與運輸業)的能源燃燒產生CO2排放之組成因素的貢獻量,係藉由拉氏指數法和算術平均迪氏指數法之加法型態,拆解5種不同的因素(包括:碳密集度、部門結構、能源密集度、人口及經濟規模等),觀察其對於CO2排放變動之影響。本文採用台灣1992-2008年的各部門別的資料作為分析的基礎,研究結果顯示,以上部門的經濟規模對於CO2排放的貢獻呈現巨幅的正向效果;人口因素則呈現微幅的正向或負向的影響;而碳密集度對於CO2排放減量有正面的影響,並發現此乃是構成改善能源結構並導致CO2排放減量的最重要因素;能源密集度因素的影響,除服務業以外,其餘部門均呈現負向影響,此一結果顯示,大部分部門要進一步改善其能源效率頗為困難,是以未來致力於減排的努力,應著重於使用乾淨能源,尤其是以再生能源作為替代能源 (Liaskas et al., 2000);此外,值得注意的是,部門結構因素對於大部分的產業,如農業、工業和運輸業的CO2排放減量有正向的影響,據此可推論,我國的部門結構已漸趨向於低耗能產業(如服務業)發展。另外,本文採用近似不相關迴歸模型,探討各項政策工具(如環境稅、進口關稅)與經濟變數(如貿易條件及時間趨勢等)透過以上5種不同的組成因素,對於CO2排放變動的影響效果作一分析,其實證結果可供決策者制定減排政策的參考。 第2個議題係為建立節能減排的有效政策工具,須先詳實掌握各項政策工具對節能減排與經濟成長的影響,乃深入回顧相關文獻之理論與實證方法,據以建立適合台灣的3E聯立模型,並進行實證分析,藉以推估多項政策工具(如環境稅、關稅等及能源價格等)與經濟變數(如貿易條件、所得等)對於節能減排與GDP的影響。實證分析結果顯示,台灣之能源消費、CO2排放、及GDP對於各項政策工具與經濟變數之彈性不僅各異其趣,而且有些彈性並非固定不變,可隨時間經過動態調整。 第3個議題係利用台灣1992-2008年之農業、工業、服務業與運輸業等部門別的panel data,仿照Battese and Coelli (1995)提出之隨機邊界(Stochastic Frontier Analysis, SFA)模型,建構隨機生產邊界函數 (stochastic production frontier function)與隨機能源需求函數 (stochastic energy demand frontier function),利用最大概似法估算出各部門的GDP與能源需求之隨機邊界與技術效率 (technical efficiency, TE),並據此實證結果提出政策建議。 / The thesis includes 3 issues of research. The first research aims at identifying the factors that have influenced change in the level of various sectors (agriculture, industry, service and transport) CO2 emissions from energy use. By means of both Laspeyres index method and the arithmetic mean weight scheme expressed separately in the additive form, the observed changes are analyzed into five different factors: CO2 intensity, structural change, sectoral energy intensity, sectoral employing population and output level. The application study refer to 4 sectors of Taiwan between 1992 and 2008. The obtained decomposition results indicate that the examined sectors the value calculated for the output level effect present the highest value appearing positive contribution of CO2, and the contribution from population is slightly increased or decreased, while CO2 intensity has beneficially influenced the reduction of CO2 emissions, as well as the improvement of fuel mix found to be the most important factor that lead to the reduction of emissions. In most of the examined sectors for the energy intensity factor present positive effect on CO2 emissions, the only exception is service sector showing negative impact on CO2 emissions, which can be stated as Liaskas et al. (2000) that as further improvements in energy efficiency in most sectors become more difficult, efforts to reduce CO2 emissions will be predominantly directed towards the use of clean energy forms and especially towards the deployment of renewable energies. It also should be noted that structural change has positively influenced the abatement of CO2 emissions for the most sectors such as agriculture, industry and transport. We conclude it shifts towards less energy-intensive service sector, due to have negative influenced the observed decrease in CO2 emissions for higher energy use sectors (industry and transport) and agriculture,. In this article, we also use a seemingly unrelated regression to further investigate the policy tools how to change in CO2 emissions level by the five different factors. The results indicate that policymakers may reduce emissions considerably through various policy instruments. The second issue focuses on initiating effective policy to save energy and reduce emission, one needs to reasonably capture the potential impacts of various policy instruments on energy consumption, CO2 emission and economic growth, the second research, after extensively reviewing the literature, builds a locally ideal empirical model that facilitates the estimation of various policy elasticities. The empirical results indicate that policy elasticities may not only differ from one to the others, but also change dynamically, implying the 3E impacts of some policy instruments might be weakening over time. The main goal of the third article is to provide a detailed analysis of productivity and efficiency measurement for panel data on four different sectors from Taiwan over the period 1992-2008. We use a stochastic frontier model set by Battese and Coelli (1995) to build a stochastic production frontier function and a stochastic energy demand frontier function, which are estimated by maximum likelihood to obtain a stochastic frontier of GDP and energy demand, as well as technical efficiency. On this empirical results, we suggest that policymaker may simultaneously make top-down policies (green tax reform, increasing environmental tax etc.) and bottom-up policies (fuel price in line with prices of gas in global markets) to increase energy efficiency in different sectors.

Page generated in 0.5035 seconds