1 |
群集樣本具巢狀誤差結構之迴歸分析 / Regression analysis for cluster samples with nested-error structure賴昭如 Unknown Date (has links)
分析具有巢狀誤差結構的迴歸模式時,惹忽略隨機誤差項之間的相關性,而採用最小平方(OLS)估計量所導出的標準 F 統計量(以 F<sup>S</sup>表之)進行檢定,會導致過大的型 I 錯誤機率;若將隨機誤差項之間的相關性納入考量,而採用廣義最小平方(GLS)估計量所導出的 F 統計量 (以 F<sup>GLS</sup>表之),則計算上會較為繁雜。因此我們藉由轉換方式,將模式轉換成隨機誤差項之間彼此獨立的新模式後,再以 F<sup>S</sup> 進行檢定,其結果與直接以 F<sup>GLS</sup> 檢定相同,且可使計算較為方便。由於模式轉換所需的轉換矩陣為母體變異數的函數,因此當母體變異數未知時,我們以 Henderson 的常數配適 (fitting-of-constants)方法來估計之。藉由模擬結果得知,若各段的觀察個數相等,則不論巢狀誤差結構為二段式(two-stage)或三段式(three-stage),廣義最小平方估計量(GLS)均較最小平方估計量(OLS)表現穩定,且 F<sup>GLS</sup> 在檢定力及實際顯著水準方面的表現也都比 F<sup>S</sup> 好。 / When analyzing the regression model with nested-error structure, if the correlations between errors are ignored, and conduting the model adequacy test by the standard F statistic (F<sup>S</sup>) led from the ordinary leastsquares estimator (OLSE) , then the type I error rate will be inflated. However, if the corrlated structure is considered and the model is tested by F<sup>GLS</sup> led from the general least-squares estimator (GLSE) , the calculation will be more complicate. The model can be transformed to a new model with independent random errors and then, tested by F<sup>S</sup> . The result is the same as the one by F<sup>GLS</sup> , also it is more convenient for calculation. Since the transformation matrix is a function of variance components, we estimate variance components by Henderson's fitting-of-constants when they are unknown. Through simulation, it is concluded that if the observations in each stage of nested-error structure are the same, the GLSE is more stable than the OLSE in both two-stage and tree-stage structures. Also, the power and the sizes of F<sup>GLS</sup> will perform better than those of F<sup>S</sup> .
|
2 |
J型-發散統計量與數種適合度檢定統計量之比較 / Comparisons of J-divergence statistic with some goodness-of-fit test statistic吳裕陽, Wu, Yuh Yang Unknown Date (has links)
Taneichi(1993)提出一個新的適合度檢定統計量J<sup>2</sup>,具有近似卡方分配的性質。然而在小樣本的情形下,計算機模擬結果顯示,它的估計顯著水準大於期望顯著水準。所以本論文的重點之一,就是對J<sup>2</sup>進行改進,根據不同的準則,來選取一個適當的常數a。我們建議對每一觀測次數加一常數0.32,作為我們修正後的統計量,這個統計量我們記為J<sub>1</sub><sup>2</sup>。
另一探討的重點是在比較皮爾生卡方統計量X<sup>2</sup>,概似比例統計量G<sup>2</sup>,Cressie & Read統計量 I(2/3),J<sup>2</sup>和J<sub>1</sub><sup>2</sup>之性質,我們想要了解在小樣本的情形之下,何者較接近於卡方分配,何者具有較強的檢定力。研究結果顯示,X<sup>2</sup>和I(2/3)較接近卡方分配,但J<sub>1</sub><sup>2</sup>又較G<sup>2</sup>及J<sup>2</sup>好;至於檢定力,我們發現沒有一個統計量在文中所探討的對立假設的情況下,同時都具有最大的檢定力。這些現象都可以用觀測次數對期望次數比值間的關係來解釋。 / Taneichi(1993) introduces a new goodness-of-fit statisticJ<sup>2</sup>, which has an asymptotic chi-squared distribution. However, the results of simulation indicate that the levels of significance are in general bigger than the nominal levels, which prompts us to device a version of J<sup>2</sup> statistic which would perform better under small sample size situations. We suggest adding 0.32 to each observed value and find that the adjustment indeed works rearonably well. This version of J^2 statistic is denoted as J(1)^2.
Although Pearson chi-square statistic X<sup>2</sup>, likelihood ratio statistic G<sup>2</sup>, Cresse-Read statistic I(2/3), J^2 and J(1) ^2 all have asymptotic chi-squared distributions, their small sample behaviors are not expected to be the same. Comparisons based on simulation studies are then made. The conclusions are as follows : (1) In terms of levels of significance, X<sup>2</sup> and I(2/3) behave more like a chi-squared distribution. Though J(1) ^2 does not perform as good as X<sup>2</sup> and I(2/3), it does outperform G<sup>2</sup> and J<sup>2</sup>. (2) In terms of powers, it does not seem that any of the test statistics has a clear advantage over the others.
|
3 |
基因晶片實驗其樣本數之研究 / Sample Size Determination in a Microarray Experiment黃東溪, Huang, Dong-Si Unknown Date (has links)
微陣列晶片是發展及應用較為成熟的生物晶片技術。由於微陣列實驗程序複雜,故資料常包含多種不同來源的實驗誤差,為了適當的區分實驗中來自處理、晶片及基因的效應,我們提出混合效應變異數分析模型來調整系統誤差。針對各基因在不同實驗環境的差異性假設檢定問題,利用最小平方法推導出點估計以及對應的檢定統計量。本研究介紹多重檢定問題中的族型一誤差,並證明在此模型下,Sidak調整法為適當的多重檢定方法。在給定族型一誤差率的顯著水準,利用檢定力的公式,運算出在預設檢定力的最低水準下所需最小樣本(晶片)數。最後我們透過電腦模擬,以蒙地卡羅法來估計檢定力與族型一誤差率,由模擬結果發現,採用此最小樣本數結果,其檢定力可達到預期的水準以上,並且其族型一誤差率皆適當地控制在顯著水準以內。
|
Page generated in 0.0136 seconds