• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2717
  • 468
  • 393
  • 355
  • 189
  • 117
  • 67
  • 58
  • 52
  • 40
  • 39
  • 32
  • 28
  • 27
  • 27
  • Tagged with
  • 5640
  • 704
  • 607
  • 510
  • 390
  • 369
  • 358
  • 336
  • 336
  • 329
  • 329
  • 313
  • 303
  • 280
  • 276
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Analysis and modeling of lossy planar optical waveguides and application to silicon-based structures

Remley, Catherine A. 20 June 1995 (has links)
This work is concerned with the modeling and analysis of lossy planar dielectric optical waveguides. Loss mechanisms which affect propagation characteristics are reviewed, and various representations of the propagation constant in the lossy case are defined. Waveguide structures which are susceptable to absorption and/or to leakage loss, in particular silicon-based structures, are discussed. The modeling and analysis of these waveguides by various computational techniques is considered. Two computational methods, the commonly used transfer matrix method and the recently developed impedance boundary method of moments (IBMOM), are reviewed and extended to the complex domain. A third computational method, which offers improved convergence of the IBMOM for structures with large stepwise changes in refractive index, is formulated. In this approach, the regions containing refractive index discontinuities are replaced by equivalent extended impedance boundary conditions, and expansion of the transverse field in the remaining region of continuous refractive index profile is carried out. A significant increase in the rate of convergence is demonstrated for various waveguide structures, including an anti-resonant reflecting optical waveguide (ARROW) structure. Two applications of the IBMOM with extended impedance boundary conditions are presented. In the first, the method is applied to the design of a chemical sensor. The sensor, a silicon-based ARROW structure, is designed to measure the refractive index of certain chemical substances with a high degree of accuracy. In a second application, graded index SiON waveguides fabricated at Oregon State University are characterized and compared to the theoretical model. Excellent agreement between the theoretical and measured coupling angles is shown. / Graduation date: 1996
302

Classical and quantum dynamics of atomic systems in the proximity of dielectric waveguides

Modoran, Andrei V., January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 197-200).
303

Gravity currents in two-layer stratified media

Tan, Alan 06 1900 (has links)
An analytical and experimental study of boundary gravity currents propagating through a two-layer stratified ambient of finite vertical extent is presented. The theoretical discussion considers slumping, supercritical gravity currents, i.e. those that generate an interfacial disturbance whose speed of propagation matches the front speed, U and follows from the classical analysis of Benjamin [J. Fluid Mech. 31, pp. 209-248, 1968]. In contrast to previous investigations, the amplitude of the interfacial disturbance is parameterized so that it can be determined straightforwardly from ambient layer depths. The theoretical model, which is applicable to the special case where the depth, D, of the gravity current fluid at the initial instant spans the channel depth, H, shows good agreement with experimental measurements and also analogue numerical simulations performed in conjunction with the present investigation. Unfortunately, it is difficult to extend our theoretical results to the more general case where D < H. Reasons for this difficulty will be discussed. From experimental and numerical observations, the interface thickness is observed to negligibly affect the speed of supercritical gravity currents even in the limit where the interface spans the channel depth so that the ambient fluid is linearly stratified over the whole of its depth. Conversely, subcritical gravity currents show a mild upward trend of U on the interface thickness. Finally, the effects of densities, ambient depths, interface thickness and D on the horizontal position, X where deceleration first begins are considered. In contrast to the uniform ambient configuration, the gravity current can propagate without decelerating beyond 12 lock lengths and decelerate as early as 1 lock length. / Thermo Fluids
304

Existence theory for linear vibration models of elastic bodies

De Villiers, Magdaline.. January 2009 (has links)
Thesis (MSc. (Natural and Agricultural Sciences)) -- University of Pretoria, 2009. / Summary in English. Includes bibliographical references (p. 125-126).
305

Analysis and Evaluation of the Wavebox Wave Energy Converter

Gotthardsson, Björn January 2010 (has links)
Increasing attention to climate change in combination with ever-growing energy consumption worldwide has boosted the demand for new green energy sources. Wave power is developing in many different branches to become part of the new era of electricity production. This thesis deals with a wave power system in its primary stages of development. The system was investigated in order to estimate its potential to produce electric power from sea waves. It is a system consisting of a moored buoy to which the energy is transferred when the wave tilts the buoy in the pitch direction. Due to the increased pitch angle, an amount of liquid contained inside the buoy is allowed to flow via ramps to an upper container, from where it flows down through a hydroelectric turbine. A computer program was used to calculate the properties of the buoy in sea waves. Another program was written in MATLAB to simulate the movements in sea waves and from a set of given parameters calculate the power output. A brief economic study was made to determine if the power output was large enough for the concept to be of financial interest to any future investors. The results show that the wave power system produced 0.9 kW in a wave climate equal to that off the coast of Hanstholm, Denmark, and 1.6 kW in a wave climate off the coast of San Diego, USA. The economic study shows that the power output needed to be improved by a factor of at least five to have a chance of being economically viable. A number of enhancements were suggested to increase the power output of the system, and further investigation could be of use to improve the concept. The created computer simulation model, as well as the results in this thesis could be valuable in any future research on the concept.
306

Canal Wave Oscillation Phenomena Due to Column Vortex Shedding

Howes, Adam M 01 April 2011 (has links)
The GARVEE Transportation Program started by the Idaho Transportation Department has improved parts of I-84 in Boise, Idaho. These desired improvements led to the widening of a bridge over the New York Canal (NYC) in 2009. To support the wider road, additional bridge columns were installed. The new bridge columns had a larger diameter than the existing columns and raised the number of columns from 28 to 60. Construction was completed just before the irrigation season began. During the first irrigation season it was observed that waves and oscillations were occurring within the canal immediately adjacent to the bridge structure. Throughout the irrigation season, it was observed that the intensity of the oscillations would vary. It was also observed that the wave oscillations propagated upstream and downstream from the bridge structure. Both longitudinal and transverse waves were observed. The waves appeared to originate in the section of the canal that was under the I-84 Bridge. A physical model was built in 2010 at Utah State University's (USU) Utah Water Research Laboratory (UWRL) in an attempt to simulate the oscillation phenomenon and to develop potential solutions to the problem. During the original modeling work, a thorough investigation to the causes of this phenomenon was not accomplished due to time constraints. The objective of the follow-up research presented in this thesis was to qualitatively determine the causes of the oscillations. Laboratory tests were performed using the original physical model used in the original 2010 testing.
307

Noise Signatures Analysis of Nearshore Breaking Wave

Wu, Jian-Yi 23 August 2010 (has links)
¡@The ocean ambient noise of coast is mainly influenced by sea waves, boats or ships, or human¡¦s coast activities. Among them, most of the ambient noise is from the breaking wave noise caused by wind, and its frequency range is quite wide (0.5~50 kHz). The breaking wave noise mechanism of surf zone is very complex, and has a variety of signal features. In this research, the location is at the Sizih Bay near Kaohsiung Harbor. Hydrophone was used to collect the noise and the wave motion process of surf zone was recorded simultaneously with a digital video camera. It was shown from the experiment results, as the wave evolved in the surf zone, it would eventually become unstable and collapsed, so a large amount of air would be trapped in water and forming bubble clouds. The oscillating bubble cloud from breaking wave would generate high frequency sound. The results also indicated that when breaking wave reached the location hydrophone, a wide band pulse sound was generated with a level as high as 120 dB. In the analysis of each frequency (1k, 2k, 3k, 4k, 5k Hz), due to the oscillating effects air bubbles after breaking wave, the noise level at 2~5k Hz were higher as compared to that without breaking wave passing the hydrophone. The last result was also validated by the time integral of the noise energy through out the wave evolution. In addition to the process of breaking waves and residual air bubbles under breaking waves contributing to the breaking wave source, for example discussed in the study breaking wave¡¦s period and breaking wave height, the results from these two studies found, when the longer the breaking wave period , the breaking wave SPL will be bigger with the longer the breaking wave period. And in the breaking wave height, when the breaking wave height much higher, breaking wave SPL will be much bigger too. And learned from these two conclusions , breaking wave periods and height will make the breaking waves source level caused by changes.
308

Analysis of observations and model simulation of swells in the water southwest Taiwan

Wu, Bo-Feng 04 January 2012 (has links)
Freak waves suddenly strike the southwest of Taiwan, may cause damages of coastal structures, tourist facilities and endanger maritime navigation. The prediction of swells and large waves is under development. In order to improve out understanding of the characteristics of swells, this study analysis data collected from a nearshore weather bouy and a coastal wave station. The Wave Watch 3 model is applied with several wind fields, and compared results with that of AVISO. The results show that (1) Waters in southwest of Taiwan, in the northeast monsoon season, the peak wave spectral energy tends to sift from short period to longer period, whereas in the southwest monsoon season, the spectrum of energy varies rapidly and is stronger. During the passage of typhoons, swells from the southern tip of Taiwan show stronger energy in the early stage and weaken gradually, on the other hand, swells from the northern tip of Taiwan show increasing energy spectrum to a peak value. The wave energy diminished after typhoon passed Taiwan Strait. (2) The patterns of wave spectrum are related to the winds. A single peak pattern is usually caused by the local winds. A double peaks wave spectrum suggests both local wind and remote forcing. The lower frequency energy is due to swells. (3) In order to separate the swells from the wind waves in the case of double peaks wave spectrum, two methods are applied. For the no typhoon period, a modified ¡¥P-M spectrum¡¦ is useful as well as is the ¡¥derivative energy spectrum¡¦. For the typhoon period, only the later method provides reasonable results. (4) Based on the analysis of separated wave spectrum, the ratio of occurrence is 65% wind wave and 35% swell in the normal days. The ratio varies during typhoon period. (5) The comparisons of Wave Watch 3 model output with AVISO data suggest that the forcing of QSCAT/NCEP Blended wind provides a better result.
309

Laboratory Study Investigating the Three-dimensional Turbulence and Kinematic Properties Associated with a Breaking Solitary Wave

Swigler, David Townley 2009 August 1900 (has links)
A laboratory experiment was performed to investigate the three-dimensional turbulence and kinematic properties that develop due to a breaking solitary and an irregular shallow water bathymetry. A large basin equipped with a piston-type wavemaker was used to generate the wave, while the free surface elevations and fluid velocities were measured using wave gauges and three-dimensional acoustic-Doppler velocimeters (ADVs), respectively. From the free surface elevations, the evolution and runup of the wave was revealed; while from the ADVs, the velocity and turbulent energy was determined to identify specific turbulent events and coherent structures. It was found that shoaling was confined to areas with gentler sloping bathymetry near the basin side walls and the runup shoreward of the still water shoreline was not uniform. The runup was characterized by a jetting mechanism caused by the convergence of water mass near the basin centerline as the wave refracted during breaking. The jetting mechanism caused the greatest cross-shore velocities to be located near the basin centerline. The greatest turbulent events were well correlated to borefronts, resembling hydraulic jumps, where the greatest shear and fluid accelerations occurred. Because of an abrupt change in the bathymetry, a coherent structure developed which was found to have a three-dimensional flow field. It was proposed that variations in the internal flow with depth were due to the orientation of multiple vortex rings.
310

Experimental study on the propagation and reflection of internal solitary wave from a uniform slop

Chen, Hsin-hsun 10 June 2004 (has links)
Laboratory experiments were conducted to investigate the propagation of internal solitary waves on a uniform slope in a two-layered free surface fluid system. The laboratory facilities employed in this study is the first in Taiwan, which include a stainless steel wave flume (dimensions: 12 meters long with cross-section 0.5 m wide and 0.7m deep) and experimental apparatus for generating and measuring internal waves. The flume incorporates a movable vertical gate at one end for generating internal solitary waves, and a uniform slope (either £c = 30o, 50o, 60o, 90o, 120o or 130o) at the other end. The upper layer had fresh water with density £l1 (999kg/m3), to a depth H1; the lower layer was saline brine density £l2 (1030 kg/m3), which was slowly filled into the flume to a depth of H2 by gravity through several openings at the bottom of the flume, Boussinesq parameter . A mini pump was used to remove a small quantity of fresh water from one side of the vertical gate to another side. By creating a prescribed difference £bo in the interface levels on either side of the gate beforehand, internal solitary wave was generated by the mechanism of overturning the brine and fresh water behind the movable gate. Five ultrasonic probes at equidistant distance recorded the interface fluctuations, one density probe measured the change of density at the interface, while two electrical capacitance gauges for the free surface displacements likely to occur. Digital cameras were also used to record the motions of internal wave in the flume and on the slope for further analysis. Laboratory test on internal solitary wave were arranged from one of the combinations using different layer thickness ratios H1/H2, interface differences £bo, density ratios £l1/£l2, and bottom slopes £c. In addition to internal solitary wave reflection from a uniform slope, laboratory investigations included internal wave propagation on a rigid impermeable bottom and evolution on a uniform slope. Keeping the total water depth in the flume at H = 40cm, an increase in the depth parameter |H2-H1|/H produced large internal wave amplitude, reduced phase velocity, and enhanced soliton feature. From the experimental result analyzed, it suggests that the Korteweg-de Vries (KdV) theory fits solitary waves of small amplitude, and the modified KdV is suitable for large amplituded waves. Considering wave motion in an inviscid fluid, the dissipation of internal solitary waves propagating in a flume may occur through bottom friction and wave breaking. Subjected to bottom friction alone, the amplitude of most internal solitary waves in the experiments decayed approximate by 10% over a journey of 6 meters. Two types of wave breaking mechanism were found to produce strong mixing and local vortex in the fluid, causing significant energy losses. For internal solitary waves of large amplitudes, reflection coefficient for wave amplitude or energy decreased, as amplitude or energy increased. Under this condition, however, the reflection coefficient due to bottom friction may be assumed as constant. Using the experimental results obtained, empirical equation is now proposed to account for wave dissipation due to for non-breaking internal waves. The equation indicates that decrease in reflection coefficient as wave amplitude or energy increases may be expressed using a second order polynomial. Overall, experimental results suggest that good agreement can be found between experimental data and the empirical equation so derived. Upon assuming the wave reflection coefficient is solely dependent on the incoming wave amplitude or energy, prediction for reflection coefficient can be calculated in a straight forward manner. Either large-scale, high-frequency internal wave motion or internal solitary waves have been observed in natural lakes. The observed rapid decay of internal wave energy after severe breaking events seemed to be mostly due to dissipation on various sloping boundaries in a lake. From the basic laboratory experiments on internal wave reflection from various single slopes, the results many benefit provide researchers to promote further research on practical applications related to limnology.

Page generated in 0.8693 seconds