• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 109
  • 24
  • 9
  • 1
  • Tagged with
  • 280
  • 134
  • 74
  • 74
  • 73
  • 73
  • 64
  • 49
  • 43
  • 43
  • 42
  • 21
  • 20
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Quantification of geometric properties of the melting zone in laser-assisted welding

John, Björn, Markert, Daniel, Englisch, Norbert, Grimm, Michael, Ritter, Marc, Hardt, Wolfram, Kowerko, Danny 14 August 2018 (has links)
By using camera systems – suitable for industrial applications – in combination with a large number of different measurement sensors, it is possible to monitor laser welding processes and their results in real-time. However, a low signal to noise ratio at framerates up to 2,400 fps allows only limited statements about the process behavior; especially concerning the analysis of new welding parameters and their impact on the melting bath. This article strives towards research of kinetic and geometric dependencies of the melting zone induced by different laser parameters through usage of a camera system with a high frame rate (1280x800 by 3,140 fps) in combination with model-driven image and data processing.
202

Geographic object-based image analysis

Marpu, Prashanth Reddy 17 April 2009 (has links)
The field of earth observation (EO) has seen tremendous development over recent time owing to the increasing quality of the sensor technology and the increasing number of operational satellites launched by several space organizations and companies around the world. Traditionally, the satellite data is analyzed by only considering the spectral characteristics measured at a pixel. The spatial relations and context were often ignored. With the advent of very high resolution satellite sensors providing a spatial resolution of ≤ 5m, the shortfalls of traditional pixel-based image processing techniques became evident. The need to identify new methods then led to focusing on the so called object-based image analysis (OBIA) methodologies. Unlike the pixel-based methods, the object-based methods which are based on segmenting the image into homogeneous regions use the shape, texture and context associated with the patterns thus providing an improved basis for image analysis. The remote sensing data normally has to be processed in a different way to that of the other types of images. In the geographic sense OBIA is referred to as Geographic Object-Based Image Analysis (GEOBIA), where the GEO pseudo prefix emphasizes the geographic components. This thesis will provide an overview of the principles of GEOBIA, describe some fundamentally new contributions to OBIA in the geographical context and, finally, summarize the current status with ideas for future developments.
203

High Voltage Power Line Detection Based on Intersection Point Algorithm

Du, Zijun 24 September 2018 (has links)
In this paper, an introduction of the challenge of High Voltage Power Line Detection and some methods about solving the similar problem are talked about. To get a better result, a sort of new methods is developed for detecting and tracking high voltage power lines in the field of high voltage power line inspection by using Unmanned Aerial Vehicle (UAV). With the fast development of automated technology, a solution of real-time detecting and tracking of high voltage power lines can be considered on UAV instead of human work. The usability of Intersection Point Algorithm is the main task for detect the power lines from the preprocessing image. There are many lines located in the preprocessing image in different directions, which get crossing with each other many times. To eliminate the false lines, some invariant features for Intersection Point Algorithm are needed. The intersection points inside of a small region and quite similar directions can probably be considered as the intersection point of power lines. Therefore, three methods are considered for grouping points, which conform to the features of intersection points of power lines. There should be only one concentrated area, which represents both power lines and heading direction of it. Method one is to select the points based on distance of points. Method two is to select the overlap region of the circles based on overlap layers. And method three is searching the overlapped layers by using Sliding Window. Result evaluation in Project APOLI is done with the Hit, Miss, Fail standard.
204

Insulator Fault Detection using Image Processing

Banerjee, Abhik 01 February 2019 (has links)
This thesis aims to present a method for detection of faults (burn marks) on insulator using only image processing algorithms. It is accomplished by extracting the insulator from the background image and then detecting the burn marks on the segmented image. Apart from several other challenges encountered during the detection phase, the main challenge was to eliminate the connector marks which might be detected as burn-marks. The technique discussed in this thesis work is one of a kind and not much research has been done in areas of burn mark detection on the insulator surface. Several algorithms have been pondered upon before coming up with a set of algorithms applied in a particular manner. The first phase of the work emphasizes on detection of the insulator from the image. Apart from pre-processing and other segmentation techniques, Symmetry detection and adaptive GrabCut are the main algorithms used for this purpose. Efficient and powerful algorithms such as feature detection and matching were considered before arriving at this method, based on pros and cons. The second phase is the detection of burn marks on the extracted image while eliminating the connector marks. Algorithms such as Blob detection and Contour detection, adapted in a particular manner, have been used for this purpose based on references from medical image processing. The elimination of connector marks is obtained by applying a set of mathematical calculations. The entire project is implemented in Visual Studio using OpenCV libraries. Result obtained is cross-validated across an image data set.
205

Automatic Image Segmentation of Healthy and Atelectatic Lungs in Computed Tomography

Cuevas, Luis Maximiliano 15 June 2010 (has links)
Computed tomography (CT) has become a standard in pulmonary imaging which allows the analysis of diseases like lung nodules, emphysema and embolism. The improved spatial and temporal resolution involves a dramatic increase in the amount of data that has to be stored and processed. This has motivated the development of computer aided diagnostics (CAD) systems that have released the physician from the tedious task of manually delineating the boundary of the structures of interest from such a large number of images, a pre-processing step known as image segmentation. Apart from being impractical, the manual segmentation is prone to high intra and inter observer subjectiveness. Automatic segmentation of the lungs with atelectasis poses a challenge because in CT images they have similar texture and gray level as the surrounding tissue. Consequently, the available graphical information is not sufficient to distinguish the boundary of the lung. The present work aims to close the existing gap left by the segmentation of atelectatic lungs in volume CT data. A-priori knowledge of anatomical information plays a key role in the achievement of this goal.
206

A Modular and Open-Source Framework for Virtual Reality Visualisation and Interaction in Bioimaging

Günther, Ulrik 27 November 2020 (has links)
Life science today involves computational analysis of a large amount and variety of data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data from analysis of such data or simulations. The advent of new imaging technologies, such as lightsheet microscopy, has resulted in the users being confronted with an ever-growing amount of data, with even terabytes of imaging data created within a day. With the possibility of gentler and more high-performance imaging, the spatiotemporal complexity of the model systems or processes of interest is increasing as well. Visualisation is often the first step in making sense of this data, and a crucial part of building and debugging analysis pipelines. It is therefore important that visualisations can be quickly prototyped, as well as developed or embedded into full applications. In order to better judge spatiotemporal relationships, immersive hardware, such as Virtual or Augmented Reality (VR/AR) headsets and associated controllers are becoming invaluable tools. In this work we present scenery, a modular and extensible visualisation framework for the Java VM that can handle mesh and large volumetric data, containing multiple views, timepoints, and color channels. scenery is free and open-source software, works on all major platforms, and uses the Vulkan or OpenGL rendering APIs. We introduce scenery's main features, and discuss its use with VR/AR hardware and in distributed rendering. In addition to the visualisation framework, we present a series of case studies, where scenery can provide tangible benefit in developmental and systems biology: With Bionic Tracking, we demonstrate a new technique for tracking cells in 4D volumetric datasets via tracking eye gaze in a virtual reality headset, with the potential to speed up manual tracking tasks by an order of magnitude. We further introduce ideas to move towards virtual reality-based laser ablation and perform a user study in order to gain insight into performance, acceptance and issues when performing ablation tasks with virtual reality hardware in fast developing specimen. To tame the amount of data originating from state-of-the-art volumetric microscopes, we present ideas how to render the highly-efficient Adaptive Particle Representation, and finally, we present sciview, an ImageJ2/Fiji plugin making the features of scenery available to a wider audience.:Abstract Foreword and Acknowledgements Overview and Contributions Part 1 - Introduction 1 Fluorescence Microscopy 2 Introduction to Visual Processing 3 A Short Introduction to Cross Reality 4 Eye Tracking and Gaze-based Interaction Part 2 - VR and AR for System Biology 5 scenery — VR/AR for Systems Biology 6 Rendering 7 Input Handling and Integration of External Hardware 8 Distributed Rendering 9 Miscellaneous Subsystems 10 Future Development Directions Part III - Case Studies C A S E S T U D I E S 11 Bionic Tracking: Using Eye Tracking for Cell Tracking 12 Towards Interactive Virtual Reality Laser Ablation 13 Rendering the Adaptive Particle Representation 14 sciview — Integrating scenery into ImageJ2 & Fiji Part IV - Conclusion 15 Conclusions and Outlook Backmatter & Appendices A Questionnaire for VR Ablation User Study B Full Correlations in VR Ablation Questionnaire C Questionnaire for Bionic Tracking User Study List of Tables List of Figures Bibliography Selbstständigkeitserklärung
207

Optimierung und Auswirkungen von ikonischen Bildfusionsverfahren zur Verbesserung von fernerkundlichen Auswerteverfahren

Klonus, Sascha 10 February 2012 (has links)
Die Verfügbarkeit von Fernerkundungsdaten ist in den letzten Jahren stark gestiegen. Spätestens seit der Entwicklung von Google Earth wächst auch das Interesse der Allgemeinheit an Fernerkundungsdaten. Aktuell ist eine Vielzahl von Satelliten- und flugzeuggestützten Fernerkundungssystemen operationell verfügbar. Neue Techniken in der Fernerkundung erbringen immer höhere räumliche und zeitliche Auflösungen. Daten, die von den verschiedenen Sensoren aufgenommen werden, unterscheiden sich daher in spektraler, räumlicher sowie temporaler Auflösung. Eines haben die meisten dieser Sensoren aber gemeinsam, nämlich, dass die höchste räumliche Auflösung nur im panchromatischen Modus erzeugt werden kann. Das Verhältnis zwischen der hoch aufgelösten panchromatischen und der niedrig auflösenden multispektralen Aufnahme eines Sensors liegt dabei zwischen 1:2 (SPOT 4) und 1:8 (DMC - Beijing-1). Diese werden in der Regel auf Bilddaten angewandt, die vom gleichen Sensor zur gleichen Zeit aufgenommen wurden (unisensorale, unitemporale Fusion). Einige Sensoren erzeugen allerdings nur panchromatische Bilder, andere, wie das neue deutsche System RapidEye, nur multispektrale Daten. Zur Erzeugung von hoch bzw. höchst aufgelösten multispektralen Bildern müssen hier sensorübergreifend Bilddaten fusioniert werden, die zu verschiedenen Zeitpunkten aufgenommen wurden (multisensorale, multitemporale Fusion). Benutzt man Daten von unterschiedlichen Sensoren, so kann das Verhältnis zwischen der hoch aufgelösten panchromatischen und der niedrig auflösenden multispektralen Aufnahme sogar 1:30 (Ikonos-Panchromatisch : Landsat-Multispektral) oder höher betragen. Neben dem Verhältnis der panchromatischen Komponente zu der multispektralen Komponente ist die Veränderung der spektralen Werte bei der Fusion aber noch entscheidender. Die Mehrzahl der entwickelten Fusionsverfahren weist dabei Farbveränderungen auf. Zudem beeinflussen diese Farbveränderungen auch anschließende Analysen. Das allgemeine Ziel der Daten- bzw. auch der Bildfusion ist: verschiedene Daten zusammenzuführen und mehr Informationen aus diesen Daten zu erhalten als aus jedem der einzelnen Sensoren allein (1+1=3). Die Fragestellung, die auch dieser Arbeit zugrunde liegt, lautet: Kann man mehr Informationen aus den fusionierten Datensätzen extrahieren als aus den einzelnen Datensätzen allein? Und wenn ja, wie viel mehr Informationen können extrahiert werden? Das erste Ziel dieser Arbeit ist ein Verfahren zu finden, welches die zu untersuchenden Merkmale so verbessert, dass der Informationsgehalt maximiert wird und damit höher ist als in den einzelnen originalen Datensätzen. In Bezug auf die Fusion von hochaufgelösten panchromatischen mit niedriger aufgelösten multispektralen Daten bedeutet dies, dass die fusionierten Daten die gleich hohe Auflösung der panchromatischen Daten besitzen, ohne dass Farbveränderungen auftreten. Diese fusionierten Daten sollten sich nicht von einem Bild unterscheiden, das mit einem multispektralen Sensor in der räumlichen Auflösung der panchromatischen Eingangsdaten aufgenommen wurde. Um dieses Ziel zu erreichen, wurde die Fusion auf der Pixelebene ausgewählt, da diese für die Fernerkundung von höchster Relevanz ist, weil die ikonischen Bildfusionsverfahren am weitesten entwickelt sind und die Eingangsdaten am wenigsten vor der Anwendung der Fusionsmethode verändert werden. Da es eine große Anzahl an Verfahren im Bereich der Bildfusion gibt, wurde zunächst auf Basis einer Literaturrecherche eine Auswahl von Verfahren getroffen. Zur Beurteilung dieser Verfahren ist es notwendig, quantitativ-statistische Verfahren auszuwählen, da eine rein visuelle Auswertung, zu subjektiv ist. Um das zweite Ziel dieser Arbeit zu erreichen wurde eine Literaturrecherche durchgeführt. Die ausgewählten Evaluierungsverfahren sollten soweit wie möglich automatisch ablaufen und nur wenig manuellen Input benötigen. Das sichert eine erhöhte Objektivität. Das Endergebnis sollte ein Wert für jeden Kanal oder das Bild sein, so dass eindeutige Rückschlüsse auf die Qualität des Bildes möglich sind. Bei der Auswahl dieser Verfahren ist darauf zu achten, dass sowohl Evaluierungsverfahren ausgewählt werden, welche die spektrale Veränderung messen, aber auch solche, welche die räumliche Verbesserung messen. Die Evaluierungsverfahren wurden für 7 Kategorien ausgewählt. Für die Kategorie 1 wird der ERGAS eingesetzt. In der zweiten Kategorie sollen die Bilddifferenzen berechnet werden. Da die einfache Differenz zweier Bilder große Datenmengen produziert und nicht ein einzelner Wert verfügbar ist, wird die Grauwertabweichung pro Pixel als Kriterium ausgewählt. Mit der dritten Kategorie sollen Ähnlichkeiten im Bildaufbau gemessen werden. Dazu eignet sich am besten der Korrelationskoeffizient. In der vierten Kategorie werden die Ähnlichkeiten der räumlichen Details gemessen. Da es hier wieder um Ähnlichkeiten geht, bietet es sich erneut an, den Korrelationskoeffizienten auch hier einzusetzen. Diesmal allerdings die Korrelation nach Hochpassfilterung zwischen den panchromatischen Eingangsdaten und den fusionierten Bildern. Kategorie 5 betrifft die Qualität der lokalen räumlichen Verbesserungen. Dazu wird die Kantendetektion mit dem Canny Kantenoperator für diese Arbeit ausgewählt. Bei der sechsten Kategorie geht es um die Messung von Unstimmigkeiten in den Spektren. Der SAM wurde daher ausgewählt. Die siebte Kategorie beschreibt die globalen Unterschiede in den Bildern. Dazu wird der SSIM verwendet. Nachdem die Evaluierungsverfahren in den sieben Kategorien ausgewählt wurden, zeigte die Anwendung dieser Evaluierungsmethoden, dass die Ehlers Fusion das beste Fusionsverfahren ist. Die uantitativstatistischen Untersuchungen präsentierten die besten Ergebnisse für die Ehlers Fusion. Die Werte zur spektralen Untersuchung unterschieden sich nur im geringem Maße von den orginalen Werten. Aus diesem Grund wurde die Ehlers Fusion für weitere Untersuchungen in dieser Arbeit ausgewählt und optimiert. Um den Mehrwert von fusionierten Daten zu ermitteln, wurde die Interpretation der fusionierten Fernerkundungsdaten durchgeführt. Bei der unisensoralen Bildfusion hat sich gezeigt, dass die Mehrzahl der Verfahren eine Verbesserung bei der Interpretation der Daten erreicht. Objekte können genauer erkannt werden und auch die Farben bleiben erhalten. Bei den multitemporalen Datensätzen und insbesondere bei der Fusion von Radardaten erreicht dieses Ziel nur ein einziges Verfahren: die Ehlers Fusion. Die Interpretation der Daten wird auch bei den multitemporalen Daten erleichtert. Es werden nicht nur die Kanten von Objekten geschärft, wie beim Brovey Verfahren, sondern auch die spektralen Werte bleiben erhalten. Die Werterhaltung ist besonders wichtig, da durch Veränderung der Farbwerte die genaue Feldfrucht nicht mehr bestimmt werden kann und eine Interpretation dadurch erschwert bzw. unmöglich wird. Bei der CAPI (Computer Assisted Photo Interpretation) konnten durch die Ehlers Fusion vor allem zwei Faktoren der Interpretation deutlich verbessert werden: Zum einen gab es eine schärfere Abgrenzung der Flächengrenzen von unterschiedlich genutzten landwirtschaftlichen Flächen im Vergleich mit den originalen spektralen Daten und zum anderen können Pflanzen, z.B. Weinberge, die nur einen Teil des Bodens bedecken, besser erkannt werden. Bei der unitemporalen Klassifikation stellte sich heraus, dass die fusionierten Daten eine höhere Genauigkeit haben, wenn für die Klassifikation nur die multispektralen Daten verwendet werden. Werden zusätzlich noch die panchromatischen Daten als weiterer Kanal für die Klassifikation herangezogen, so ist die Genauigkeit gleich. Bei der multitemporalen Klassifikation zeigte sich dagegen, dass fusionierte Daten genauer klassifiziert werden können als die Daten mit einem zusätzlichen panchromatischen Kanal. Da bei der Klassifikation mit einem panchromatischen Kanal, der Aufnahmetermin nicht mit den multispektralen Daten übereinstimmt. Bei der Klassifikation mit fusionierten Radardaten zeigte sich, dass die fusionierten Daten eine detailliertere und damit verbesserte Klassifikation erzeugen. Fusionierte Daten können also dabei helfen, mehr Informationen aus den Eingangsdaten zu extrahieren als aus jeden der einzelnen Datensätze. Diese Arbeit hat gezeigt, dass die Genauigkeiten der Klassifikation sich erhöhen kann, wenn die Daten vorher fusioniert werden. Auch die Interpretation kann deutlich dadurch erleichtert werden, dass nicht der panchromatische Kanal und die multispektralen Kanäle getrennt voneinander betrachtet werden müssen. Man kann sich auf ein fusioniertes Bild konzentrieren und seine Interpretation durchführen.
208

Hypothesis Generation for Object Pose Estimation From local sampling to global reasoning

Michel, Frank 14 February 2019 (has links)
Pose estimation has been studied since the early days of computer vision. The task of object pose estimation is to determine the transformation that maps an object from it's inherent coordinate system into the camera-centric coordinate system. This transformation describes the translation of the object relative to the camera and the orientation of the object in three dimensional space. The knowledge of an object's pose is a key ingredient in many application scenarios like robotic grasping, augmented reality, autonomous navigation and surveillance. A general estimation pipeline consists of the following four steps: extraction of distinctive points, creation of a hypotheses pool, hypothesis verification and, finally, the hypotheses refinement. In this work, we focus on the hypothesis generation process. We show that it is beneficial to utilize geometric knowledge in this process. We address the problem of hypotheses generation of articulated objects. Instead of considering each object part individually we model the object as a kinematic chain. This enables us to use the inner-part relationships when sampling pose hypotheses. Thereby we only need K correspondences for objects consisting of K parts. We show that applying geometric knowledge about part relationships improves estimation accuracy under severe self-occlusion and low quality correspondence predictions. In an extension we employ global reasoning within the hypotheses generation process instead of sampling 6D pose hypotheses locally. We therefore formulate a Conditional-Random-Field operating on the image as a whole inferring those pixels that are consistent with the 6D pose. Within the CRF we use a strong geometric check that is able to assess the quality of correspondence pairs. We show that our global geometric check improves the accuracy of pose estimation under heavy occlusion.
209

Automatisierte Ermittlung der Vorzugsrichtung von Nervenfasern in mikroskopischen Abbildungen des menschlichen Gehirn

Schätzchen, Sarah 25 July 2023 (has links)
Diese Arbeit befasst sich mit der automatisierten Analyse der Ausrichtungen von Neuronenfasern in Mikroskopiebildern des menschlichen Gehirns. Für eine solche Analyse wurden vom Paul-Flechsig-Institut für Hirnforschung Leipzig (PFI) Fluoreszenzbilddaten zur Verfügung gestellt. Um für diese Daten Faserausrichtungen zu ermitteln, werden drei Schritte durchgeführt: Neuronenfasern werden hervorgehoben, bzw. freigestellt, es werden Orientierungen zu diesen zugeordnet und die hierdurch ermittelten Ergebnisse werden visualisiert. Es werden für jeden dieser Schritte mehrere Verfahren der klassischen Bildverarbeitung vorgestellt und die Auswirkung verschiedener Parameter auf deren Ergebnisse untersucht. Betrachtet werden Verfahren zur Kontrasterhöhung, Gauß-Filter, auf Hessematrizen basierende Filter, Berechnung von Phasenübereinstimmung und eine Wavelet-Transformation. Alle während dieser Arbeit vorgenommenen Implementierungen stehen als Python-Skripte auf GitHub (https://github.com/saphyll/fiber-orientation) zur Verfügung.:Einleitung 1. Grundlagen 1.1 Datengrundlage 1.2 Architektur 1.3 Grundlagen der Bildverarbeitung 1.3.1 Histogramme 1.3.2 Konvolution 1.3.3 Gaußkernel 1.3.4 Hessematrix und Eigenvektoren 1.4.5 Fourier-Transformation 2. Faseranalyse in 2D 2.1 Hervorhebung von Fasern 2.1.1 Histogram Equalization 2.1.2 Gauß-Filter 2.1.3 Hessematrix-basierte Filter 2.1.4 Phase Congruency 2.1.5 Isotropic Undecimated Wavelet Transform 2.2 Analyse und Visualisierung von Faserrichtungen 2.2.1 Richtungshistogramme 2.2.2 Kacheln 2.2.3 Direkte Ergebnisbilder 3. Zusammenfassung und Ausblick / This thesis covers the automated analysis of fiber orientations in microscopic images of the human brain in regard to data provided by the Paul Flechsig Institute of Brain Research Leipzig (PFI). For the retrieval of information about fiber orientations, three steps are used: An enhancement of fiber visibility and definition, an assignment of orientations to those fibers and a visualisation of fibers and their orientations. Multiple methods from classical image processing are presented for each of these steps and are evaluated according to the available data. These methods include contrast enhancement, gaussian filters, hessian filters, calculation of phase congruency and a wavelet transformation. All implementations resulting from this thesis are available as Python scripts on GitHub (https://github.com/saphyll/fiber-orientation).:Einleitung 1. Grundlagen 1.1 Datengrundlage 1.2 Architektur 1.3 Grundlagen der Bildverarbeitung 1.3.1 Histogramme 1.3.2 Konvolution 1.3.3 Gaußkernel 1.3.4 Hessematrix und Eigenvektoren 1.4.5 Fourier-Transformation 2. Faseranalyse in 2D 2.1 Hervorhebung von Fasern 2.1.1 Histogram Equalization 2.1.2 Gauß-Filter 2.1.3 Hessematrix-basierte Filter 2.1.4 Phase Congruency 2.1.5 Isotropic Undecimated Wavelet Transform 2.2 Analyse und Visualisierung von Faserrichtungen 2.2.1 Richtungshistogramme 2.2.2 Kacheln 2.2.3 Direkte Ergebnisbilder 3. Zusammenfassung und Ausblick
210

Towards Accurate and Efficient Cell Tracking During Fly Wing Development

Blasse, Corinna 05 December 2016 (has links) (PDF)
Understanding the development, organization, and function of tissues is a central goal in developmental biology. With modern time-lapse microscopy, it is now possible to image entire tissues during development and thereby localize subcellular proteins. A particularly productive area of research is the study of single layer epithelial tissues, which can be simply described as a 2D manifold. For example, the apical band of cell adhesions in epithelial cell layers actually forms a 2D manifold within the tissue and provides a 2D outline of each cell. The Drosophila melanogaster wing has become an important model system, because its 2D cell organization has the potential to reveal mechanisms that create the final fly wing shape. Other examples include structures that naturally localize at the surface of the tissue, such as the ciliary components of planarians. Data from these time-lapse movies typically consists of mosaics of overlapping 3D stacks. This is necessary because the surface of interest exceeds the field of view of todays microscopes. To quantify cellular tissue dynamics, these mosaics need to be processed in three main steps: (a) Extracting, correcting, and stitching individ- ual stacks into a single, seamless 2D projection per time point, (b) obtaining cell characteristics that occur at individual time points, and (c) determine cell dynamics over time. It is therefore necessary that the applied methods are capable of handling large amounts of data efficiently, while still producing accurate results. This task is made especially difficult by the low signal to noise ratios that are typical in live-cell imaging. In this PhD thesis, I develop algorithms that cover all three processing tasks men- tioned above and apply them in the analysis of polarity and tissue dynamics in large epithelial cell layers, namely the Drosophila wing and the planarian epithelium. First, I introduce an efficient pipeline that preprocesses raw image mosaics. This pipeline accurately extracts the stained surface of interest from each raw image stack and projects it onto a single 2D plane. It then corrects uneven illumination, aligns all mosaic planes, and adjusts brightness and contrast before finally stitching the processed images together. This preprocessing does not only significantly reduce the data quantity, but also simplifies downstream data analyses. Here, I apply this pipeline to datasets of the developing fly wing as well as a planarian epithelium. I additionally address the problem of determining cell polarities in chemically fixed samples of planarians. Here, I introduce a method that automatically estimates cell polarities by computing the orientation of rootlets in motile cilia. With this technique one can for the first time routinely measure and visualize how tissue polarities are established and maintained in entire planarian epithelia. Finally, I analyze cell migration patterns in the entire developing wing tissue in Drosophila. At each time point, cells are segmented using a progressive merging ap- proach with merging criteria that take typical cell shape characteristics into account. The method enforces biologically relevant constraints to improve the quality of the resulting segmentations. For cases where a full cell tracking is desired, I introduce a pipeline using a tracking-by-assignment approach. This allows me to link cells over time while considering critical events such as cell divisions or cell death. This work presents a very accurate large-scale cell tracking pipeline and opens up many avenues for further study including several in-vivo perturbation experiments as well as biophysical modeling. The methods introduced in this thesis are examples for computational pipelines that catalyze biological insights by enabling the quantification of tissue scale phenomena and dynamics. I provide not only detailed descriptions of the methods, but also show how they perform on concrete biological research projects.

Page generated in 0.0833 seconds