• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 34
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 122
  • 80
  • 48
  • 47
  • 32
  • 31
  • 29
  • 27
  • 25
  • 25
  • 23
  • 23
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Svařování heterogenních svarových spojů Ti/Al slitin pomocí elektronového svazku / ELECTRON BEAM WELDING OF HETEROGENEOUS WELDS OF Ti/Al ALLOYS

Havlík, Petr January 2020 (has links)
The problematics of weldability of heterogeneous welds of aluminium and titanium alloys produced by electron beam welding is discussed in this work. Homogenous welds of selected alloys were analyzed in the first stage. Welding of these materials relates to formation of intermetallic phases at the interface of base materials due to differences in physical, chemical and metallurgical properties of base materials. One of the prerequisites for producing high quality weld joints is to find optimal process parameters. The influence of selected process parameters to integrity, structure and mechanical properties of heterogeneous Al/Ti joints is evaluated.
92

Svařování ODS materiálů elektronovým svazkem / Electron beam welding of ODS materials

Jankůj, Luděk January 2016 (has links)
Thesis on Electron beam welding of ODS materials is divided into theoretical and experimental part. In the first part the theoretical research work focuses on the accurate description of the candidate materials in a research fusion reactor ITER. Following are detailed constructional ODS materials and tungsten alloy as a material of the first wall. The second part of the theoretical research deals with various possibilities of joining high-melting dissimilar materials such as brazing or electron beam welding as well, which will be established in the experimental section. The experimental part of the thesis deals with a joining ODS steel MA 956 with sintered carbide WC-Co and ODS tungsten. These materials are welded by electron beam. Individual samples are distinguished used filler material, preheating or welding parameters. This thesis contains photographic documentations of microstructure the welding samples, results from scanning electron microscopy, and measurements of microhardness across the weld metal.
93

Strukturní stabilita svarových spojů austenitických a feritických ocelí / Microstructural Stability of Weld Joints of Austenitic and Ferritic Steels

Šohaj, Pavel January 2014 (has links)
This doctoral thesis summarizes the theoretical and experimental knowledge in the field of dissimilar weld joint of progressive austenitic and ferritic creep-resistant steels. The following materials were selected for the presented study: 316Ti stabilized austenitic stainless steel, martensitic 9-12 %Cr steel P92 and ferritic ODS steel MA 956. The main attention was focused on the long-term microstructural stability during high temperature exposure of heterogeneous joints of the austenite / ferrite type. The literature analysis critically evaluates the current state of knowledge in the field of microstructural stability of advanced creep-resistant steels weld joints. The practical experimental part was carried out in two directions. On the basis of the chemical composition phase equilibrium calculations were performed for each steel using the ThermoCalc software, giving the basic concepts about the dependence of the phase composition and the chemical composition of phases on temperature. In parallel with these calculations the laboratory joints 316Ti/P92 made by resistance welding and the MA 956/316Ti electron beam weld joints were prepared, analyzed in as-weld state and further annealed at different temperature conditions. Exposed joints were subjected to microstructure and phase analysis. The stability of the weld interface was mainly observed. Attention was also focused on the agreement between the calculation and experimental data in comparison with data published in the literature. Based on the calculations, experimental results and published data the suitability of the combination of materials is discussed in the thesis and reasoning about the behavior of studied weld joints during long-term high temperature exposure was formulated. Based on the results the expected degree of microstructural stability of 316Ti/P92 joint was confirmed, while the joints MA 956/316Ti were found to be unstable.
94

Investigations Near the Fusion Boundary of Grade 91 Steel Dissimilar Metal Welds with Nickel Based Filler Metals

Kuper, Michael W. January 2018 (has links)
No description available.
95

A Comparative Study of 2024-T3 and 7075-T6 Aluminum Alloys Friction Stir Welded with Bobbin and Conventional Tools

Goetze, Paul Aaron 02 May 2019 (has links)
No description available.
96

Investigation of Weldability in High-Cr Ni-base Filler Metals

Luskin, Timothy Clark 24 July 2013 (has links)
No description available.
97

Comparative Analysis on Dissimilar Laser Welding of Ti6AL4V and Ni-Ti with Vanadium and Niobium Interlayer

Dahal, Saroj 02 May 2023 (has links)
No description available.
98

Friction Bit Joining of 5754 Aluminum to DP980 Ultra-High Strength Steel: A Feasibility Study

Weickum, Britney 07 July 2011 (has links) (PDF)
In this study, the dissimilar metals 5754 aluminum and DP980 ultra-high strength steel were joined using the friction bit joining (FBJ) process. The friction bits were made using one of three steels: 4140, 4340, or H13. Experiments were performed in lap shear, T-peel, and cross tension configurations, with the 0.070" thick 5754 aluminum alloy as the top layer through which the friction bit cut, and the 0.065" thick DP980 as the bottom layer to which the friction bit welded. All experiments were performed using a computer controlled welding machine that was purpose-built and provided by MegaStir Technologies. Through a series of designed experiments (DOE), weld processing parameters were varied and controlled to determine which parameters had a significant effect on weld strength at a 95% confidence level. The parameters that were varied included spindle rotational speeds, Z-command depths, Z-velocity plunge rates, dwell times, and friction bit geometry. Maximum lap shear weld strengths were calculated to be 1425.4lbf and were to be obtained using a bit tip length at 0.175", tip diameter at 0.245", neck diameter at 0.198", cutting and welding z-velocities at 2.6"/min, cutting and welding RPMs at 550 and 2160 respectively, cutting and welding z-commands at -0.07" and -0.12" respectively, cooling dwell at 500 ms, and welding dwell at 1133.8 ms. These parameters were further refined to reduce the weld creation time to 1.66 seconds. These parameters also worked well in conjunction with an adhesive to form weld bonded samples. The uncured adhesive had no effect on the lap shear strengths of the samples. Using the parameters described above, it was discovered that cross tension and T-peel samples suffered from shearing within the bit that caused the samples to break underneath the flange of the bit during testing. Visual inspection of sectioned welds indicated the presence of cracking and void zones within the bit.
99

Development of Smart Tie-layers for Multilayer Packaging through Polyelectrolyte/Surfactant Coacervation

Benalcazar Bassante, Jose Carlos 15 June 2023 (has links)
No description available.
100

Using Duplex Stainless Steel to Join X65 Pipe Internally Clad with Alloy 625 for Subsea Applications

Suma, Emeric Emmanuel 10 August 2017 (has links)
No description available.

Page generated in 0.0649 seconds