• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Excimer laser surface melting treatment on 7075-T6 aluminium alloy for improved corrosion resistance

Elkandari, Bader M. H. M. January 2013 (has links)
High strength 7xxx aluminium alloys are used extensively in the aerospace industry because the alloys offer excellent mechanical properties. Unfortunately, the alloys can suffer localised corrosion due to the presence of large intermetallic particles at the alloy surface that are aligned in the rolling direction. Laser surface melting (LSM) techniques offer the potential to reduce and/or to eliminate the intermetallic phases from the surface of the alloy without affecting the alloy matrix.The present study concerns the application of LSM using an excimer laser to enhance the corrosion resistance of AA 7075-T6 aluminium alloy. The initial stage of the project was aimed at optimising the laser conditions for production of a uniform microstructure, with the increase in the corrosion resistance of the alloy being determined by potentiodynamic polarization measurements in sodium chloride solution. Low and high laser energy densities were used with a different number of pulses per unit area to treat the alloy surface, which were achieved by changing both the laser fluence and the pulse repetition frequency. A laser fluence of 3.3 J/cm2 with 80 pulses was subsequently selected as the optimum condition to treat the surface of the alloy. The composition and microstructure of the alloy before and after LSM treatment, and following corrosion tests, were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD).After the laser treatment, the surface and the cross-sections of the alloy showed a significant reduction in the number of large intermetallic particles and a relatively homogenous melted layer was generated that provided significant improvement in the resistance of the alloy against corrosion, as assessed by several corrosion test methods, including exfoliation corrosion (EXCO) tests. However, delamination of the melted layer was observed after extended testing in the EXCO solution which is possibly related to the formation of bands of fine magnesium and zinc-rich precipitates within the melted layer. Therefore, anodising in sulphuric acid was applied to the LSM alloy, in order to further increase the corrosion resistance and to protect the laser treated layer from delamination by generating a thin oxide film over the LSM layer. The results revealed that the anodic treatment increased the resistance of the alloy to exfoliation attack.
2

Characterization of Inhibition and Leachability of Corrosion Inhibitors in Commercial Primer Systems

Klomjit, Pitichon 27 May 2015 (has links)
No description available.
3

Fatigue life validation of aircraft materials

Ramesh, Aashish, Kalkur, Gaurav January 2020 (has links)
Fatigue is one of the critical design aspects with immense significance where thefatigue life of a material can be stated as the number of cycles that a componentcan withstand under a particular type of loading without failure. The design processhas to include fatigue analysis in order to predict failure due to fatigue. This helpsin maintenance and servicing of a component reducing the chance of failure duringoperation of the component. Increased efficiency of predictive maintenance improvesthe life of the component.This thesis aims to study the relationship between the experimental, analytical andnumerical solutions of two high strength aluminium alloys and one steel alloy fortheir life in aircraft applications covering the effects of geometrical irregularities. Italso aims to answer convergence between the numerical and the analytical methodwhen compared with each other. The simulations are carried out for three materialsamong many used in aircraft and industrial applications (Al 7050-T7451, Al 7075-T6 and AISI 4340 Steel) for a pre-defined set of geometries. The stress field andthe stress concentration factor variations are also studied to identify their effects onfatigue life.The results from this work forms a strong background for the future research alongside SAAB or any other industries using these materials for their structures to findout the failure or predicting it accurately. Also, integral structures can be analysedin detail using this thesis as a base.
4

Effects of Advanced Surface Treatments on Microstructure, Residual Stress and Corrosion-Fatigue Behavior of Aluminum Alloy 7075-T6

Sharma, Anurag 05 October 2021 (has links)
No description available.
5

A Comparative Study of 2024-T3 and 7075-T6 Aluminum Alloys Friction Stir Welded with Bobbin and Conventional Tools

Goetze, Paul Aaron 02 May 2019 (has links)
No description available.
6

A Numerical Model of the Friction Stir Plunge

McBride, Stanford Wayne 17 April 2009 (has links) (PDF)
A Lagrangian finite-element model of the plunge phase of the friction stir welding process was developed to better understand the plunge. The effects of both modeling and experimental parameters were explored. Experimental friction stir plunges were made in AA 7075-T6 at a plunge rate of 0.724 mm/s with spindle speeds ranging from 400 to 800 rpm. Comparable plunges were modeled in Forge2005. Various simulation parameters were explored to assess the effect on temperature prediction. These included the heat transfer coefficient between the tool and workpiece (from 0 to 2000 W/m-K), mesh size (node counts from 1,200 to 8,000), and material model (five different constitutive relationships). Simulated and measured workpiece temperatures were compared to evaluate model quality. As spindle speed increases, there is a statistically significant increase in measured temperature. However, over the range of spindle speeds studied, this difference is only about 10% of the measured temperature increase. Both the model and the simulation show a similar influence of spindle speed on temperature. The tool-workpiece heat transfer coefficient has a minor influence (<25% temperature change) on simulated peak temperature. Mesh size has a moderate influence (<40% temperature change) on simulated peak temperature, but a mesh size of 3000 nodes is sufficient. The material model has a high influence (>60% temperature change) on simulated peak temperature. Overall, the simulated temperature rise error was reduced from 300% to 50%. It is believed that this can be best improved in the future by developing improved material models.
7

Deformation History and Load Sequence Effects on Cumulative Fatigue Damage and Life Predictions

Colin, Julie Anne January 2009 (has links)
No description available.

Page generated in 0.0683 seconds