• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 222
  • 80
  • 59
  • 45
  • 22
  • 13
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 566
  • 95
  • 78
  • 68
  • 65
  • 42
  • 41
  • 38
  • 36
  • 36
  • 34
  • 33
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Sledování termodynamické stability thaumasitu v závislosti na zvolených vnitřních a vnějších parametrech / Monitoring the thermodynamic stability of thaumasite depending on selected internal and external parameters

Ďurtová, Aneta January 2019 (has links)
This thesis deals with thermodynamic stability of thaumasite in dependence on selected external parameters. It focuses on optimizing preparation by ternesite hydration and comparing it with other methods in a suitable environment. Specifically, using the saccharate method, followed by the hydration of ternesite clinkers and the influence of calcium aluminate phases on the stability of thaumasite produced by the hydration of ternesite clinker. Subsequently, the phase composition was evaluated by X-ray diffraction analysis, in some cases by electron microscopy.
462

Studium vlivů ovlivňujících životnost cementobetonových krytů v ČR / Study of impacts affecting the lifetime of cement concrete coverings in the Czech Republic

Láznička, Josef January 2019 (has links)
This thesis deals with the study of cement – concrete coverings. The aim of the thesis is a summary of current knowledge of these constructions. The experimental part of this paper deals with the design of concrete for the lower layer of cement – concrete cover. Emphasis is placed on the elimination of microcracks and to increase the lifetime of these construction.
463

Vliv tenzidů a kosmetických polysacharidů na parametry pleti a její mikrobiom / Influence of surfactants and cosmetic polysaccharides on skin parameters and human skin microbiome

Pilipenco, Alina January 2020 (has links)
The aim of this diploma thesis was to investigate the effect of surfactants and cosmetic polysaccharides on skin parameters and its microbiome. Three surfactants were tested to determine their effect: Sodium Dodecyl Sulfate (SDS), Cocamidopropyl Betaine (CAPB), Decylglucoside (DG). Distilled water was also used for comparison. For the next part of the experimental work were selected 6 polysaccharides: high molecular weight Hyaluronic Acid (HMW HA), very low molecular weight Hyaluronic Acid (VLMW HA), Sodium Caproyl Hyaluronate (CaproylHA), Sodium Carboxymethyl -Glucan (NaCMG), Schizophyllan and Glucomannan. For comparison, placebo and untreated control (only CAPB treatment) were also included in the tests. The first part of the work is a literature search on the assigned topic, which contains the following parts: skin anatomy and its biophysical properties, skin microbiome and its functions, description of used surfactants and polysaccharides. The experimental part is mainly focused on bioengineering methods for evaluation of skin parameters and qRT-PCR to determine the relative proportion of main bacterial species of skin microbiome. First, the effect on the CT gene of 16S rDNA was analysed, and Propionibacterium acnes and Staphylococcus epidermidis strains were selected for further analysis. In conclusion are presented an overview of all properties of selected substances and assessment of their application in cosmetics.
464

Možnosti redukce šestimocného chromu při hydrataci portlandského cementu / Possibilities of hexavalent chromium reduction within portland cement hydration

Mončeková, Miroslava January 2012 (has links)
The issue of Hexavalent chromium toxicity to Portland cement hydration is a very actual these days. It takes much effort to obtain a cement containing Cr(VI) less than 2 ppm. The primary objective of this diploma theses is to find appropriate reducing substances and specify their efficiency, as well as to make an attempt to optimize their dosage. As reducing substances there were plumbed sulphites and tin(II) salts. The influence of reducing substances applied to the hydration and cement properties were validated by strenght tests, the calorimetric measurement and the volume-variation measurement. And also the changes in hydration products microstructure of Portland clinker after the gypsum replacement by sulphite ions were plumbed. The study of microstructure is based on SEM and XRD methods.
465

Modifikace vlastností portlandských cementů orientovaná na snížení emisí CO2 / Modicications of Portland cement properties focused on reducing CO2 emissions

Magrla, Radek January 2013 (has links)
This thesis aims to burn raw material with a lower content of carbonate component for the production of Portland cement. Substitution of carbonate component is done by fluidized fly ash. The model cements are tested of basic technological properties and the hydration process is observed.
466

Výzkum v oblasti anhydritových pojiv / Research in the Field of Anhydrite Binders

Břicháčková, Jana January 2014 (has links)
The presented work deals with research in the field of sulfate binders on the anhydrite base. Conceptually, it is divided into a general theory of sulfate binders and anhydrite mortar compounds, which is describing in detail the using of anhydrite mortar compounds on the poured floor screeds, and then the experimental part, where is made the mineralogical analysis of seven different gypsum resources and subsequent is monitored the effect of two sulfate exciters on the achieved technological properties and hydration process.
467

Příprava a vlastnosti románského cementu / Preparation and Properties of Roman Cement

Opravil, Tomáš January 2009 (has links)
The Ph.D. thesis deals with the preparation of highly hydraulic binders based on roman cement. Roman cement (natural cement) is recently not available on the market due to uneconomic production of such a specific binder. On the other hand there is a big lack of information on this hydraulic binder. These results in failure in meeting the basic principle of modern approaches to restoration of historical buildings or monuments made of such kind of materials, which is such, that the materials used for restoration should be compatible with original material. Recognition of the processes of roman cement preparation based on progressive methods of study can provide substantial information for more efficient raw material selection or even for nontraditional utilization, for example for artworks. This work hence is aimed at studying and selection of traditional natural as well as nontraditional raw materials such as clay. This work also studies the preparation of highly hydraulic binders based on roman cement and the kinetics of burning and hydration processes
468

Conception, synthèse, évaluation biologique de molécules duales inhibitrices de la tubuline et HDAC et développement d’un système catalytique efficace pour l’hydratation d’alcyne / Concept, synthesis, biological evaluation of tubulin and HDAC dual inhibitory molecules and development of an efficient catalytic system of alkyne hydration

Lin, Hsin-Ping 21 December 2018 (has links)
Ce travail rapporte la synthèse et l'évaluation biologique des molécules hybrides de type isocombrétastatine A-4/belinostat. L'évaluation biologique de cette nouvelle série nous a permis d'identifier deux molécules inhibitrices de la polymérisation de la tubuline ainsi que de la HDAC8 possédant une puissante activité anti-proliférative dans la gamme du nanomolaire. De plus, nous démontrons que le système de catalyseur PtO2/PTSA-MeOH/H2O est très efficace pour convertir les alcynes internes et terminaux en cétones et qu’il est compatible avec une grande variété de groupes fonctionnels. / In this work, we report the synthesis and biological evaluation of isocombretastatin A-4/belinostat hybrid molecules. The biological evaluation of these new series has identified two molecules with potent anti-proliferative activity in the nanomolar range, which exhibit inhibitory activity on tubulin assembly and HDAC8. Second, we demonstrate that the PtO2/PTSA-MeOH/H2O catalyst system is very efficient in converting internal and terminal alkynes to ketones and that it is compatible with a wide variety of functional groups.
469

Protein–Lipid Interactions and the Functional Role of Intra-Membrane Protein Hydration in the PIB-type ATPase CopA from Legionella pneumophila

Fischermeier, Elisabeth 07 October 2015 (has links)
Membrane proteins are vital for cellular homeostasis. They maintain the electrochemical gradients that are essential for signaling and control the fine balance of trace elements. In order to fulfill these tasks, they need to undergo controlled conformational transitions within the lipid bilayer of a cell membrane. It is well-recognized that membrane protein structure and function depends on the lipid membrane. However, much less is known about the role of water re-partitioning at the protein–lipid interface and particularly within a membrane protein during functional transitions. Intra-membrane protein hydration is expected to be particularly important for ion transport processes, where the hydration shell of a solvated ion needs to be rearranged and partially removed in order to bind the ion within the transporter before it is re-solvated upon exiting the membrane protein. These processes are spatially and temporally organized in metal-transporting ATPases of the PIB-subtype of P-type ATPases. Here, the functional role of water entry into the transmembrane region of the copper-transporting PIB-type ATPase CopA from Legionella pneumophila (LpCopA) has been investigated. The recombinant protein was affinity-purified and functionally reconstituted into nanodiscs prepared with the extended scaffolding protein MSP1E3D1. Nanodiscs provide a planar native-like lipid bilayer in a water-soluble nanoparticle with advantageous optical properties for spectroscopy. The small polarity-sensitive fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) was used as a probe for the molecular environment of the conserved copper-binding cysteine-proline-cysteine (CPC) motif which is located close to a wide “entry platform” for Cu+ to the transmembrane (TM) channel. The systematic study of proteins with mutated metal-binding motifs using steady-state and time-resolved fluorescence spectroscopy indicates that strong gradients of hydration and protein flexibility can exist across the narrow range of the CPC motif. The data suggest that Cu+ passes a “hydrophobic gate” at the more cytoplasmic C384 provided by rather stable TM helix packing before entering a more flexible and readily hydratable site in the interior of LpCopA around C382 where the polarity is strongly regulated by protein–lipid interactions. This flexibility could also be partly mediated by rearrangements of an adjacent amphipathic protein stretch that runs parallel to the membrane surface as a part of the cytoplasmic entry site. Using tryptophan fluorescence, circular dichroism, and Fourier-transform infrared absorption spectroscopy of a synthetic peptide derived from this segment, its lipid-dependent structural variability could be revealed. Depending on lipid-mediated helix packing interactions, the CPC motif has the potential to support a strong dielectric gradient with about ten units difference in permittivity across the CPC distance. This property may be crucial in establishing the directionality of ion transport by a non-symmetric re-solvation potential in the ion release channel of LpCopA. The experimental elucidation of these molecular details emphasizes not only the importance of intra-membrane protein water which has been hypothesized particularly for PIB-type ATPases. Moreover it is shown here, that the lateral pressure of a cell membrane may provide a force that restores a low hydration state from a transiently formed state of high internal water content at the distal side of the CPC motif. ATP-driven conformational changes that induce intra-membrane protein hydration of a conformational intermediate of the Post-Albers cycle could thus be set back efficiently by lateral pressure of the cell membrane at a later step of the cycle.
470

Applications of Deep Neural Networks in Computer-Aided Drug Design

Ahmadreza Ghanbarpour Ghouchani (10137641) 01 March 2021 (has links)
<div>Deep neural networks (DNNs) have gained tremendous attention over the recent years due to their outstanding performance in solving many problems in different fields of science and technology. Currently, this field is of interest to many researchers and growing rapidly. The ability of DNNs to learn new concepts with minimal instructions facilitates applying current DNN-based methods to new problems. Here in this dissertation, three methods based on DNNs are discussed, tackling different problems in the field of computer-aided drug design.</div><div><br></div><div>The first method described addresses the problem of prediction of hydration properties from 3D structures of proteins without requiring molecular dynamics simulations. Water plays a major role in protein-ligand interactions and identifying (de)solvation contributions of water molecules can assist drug design. Two different model architectures are presented for the prediction the hydration information of proteins. The performance of the methods are compared with other conventional methods and experimental data. In addition, their applications in ligand optimization and pose prediction is shown.</div><div><br></div><div>The design of de novo molecules has always been of interest in the field of drug discovery. The second method describes a generative model that learns to derive features from protein sequences to design de novo compounds. We show how the model can be used to generate molecules similar to the known for the targets the model have not seen before and compare with benchmark generative models.</div><div><br></div><div>Finally, it is demonstrated how DNNs can learn to predict secondary structure propensity values derived from NMR ensembles. Secondary structure propensities are important in identifying flexible regions in proteins. Protein flexibility has a major role in drug-protein binding, and identifying such regions can assist in development of methods for ligand binding prediction. The prediction performance of the method is shown for several proteins with two or more known secondary structure conformations.</div>

Page generated in 0.0735 seconds