Spelling suggestions: "subject:" lica"" "subject:" lic""
1 |
The Role of Counter-conditioning in the Extinction of Conditioned Taste AversionsMorris, Richard January 2001 (has links)
The experiments reported in this thesis attempted to examine the influence of thirst on the extinction of taste aversions in rats. Differences in the amount of stimulus exposure and deprivation state between groups were controlled for. The first experiment presented two novel flavours twelve times to rats when either thirsty or sated. A preference for the flavour presented when thirsty was established. The next three experiments examined whether this preference would accelerate the extinction of a taste aversion, by first pairing a novel flavour with lithium and then presenting the conditioned flavour when rats were either sated or thirsty. No evidence of accelerated extinction was found. The final two experiments examined whether the associatively-activated representation of sucrose could function to extinguish a taste-aversion to that sucrose without presenting sucrose itself. No evidence of representation-mediated extinction was found despite evidence that the context was associated with sucrose. The results indicate that the extinction of conditioned taste aversions is not influenced by counter-conditioning due to thirst relief, and extinction of such aversions appears to be due to similar processes as other forms of conditioning.
|
2 |
The Role of Counter-conditioning in the Extinction of Conditioned Taste AversionsMorris, Richard January 2001 (has links)
The experiments reported in this thesis attempted to examine the influence of thirst on the extinction of taste aversions in rats. Differences in the amount of stimulus exposure and deprivation state between groups were controlled for. The first experiment presented two novel flavours twelve times to rats when either thirsty or sated. A preference for the flavour presented when thirsty was established. The next three experiments examined whether this preference would accelerate the extinction of a taste aversion, by first pairing a novel flavour with lithium and then presenting the conditioned flavour when rats were either sated or thirsty. No evidence of accelerated extinction was found. The final two experiments examined whether the associatively-activated representation of sucrose could function to extinguish a taste-aversion to that sucrose without presenting sucrose itself. No evidence of representation-mediated extinction was found despite evidence that the context was associated with sucrose. The results indicate that the extinction of conditioned taste aversions is not influenced by counter-conditioning due to thirst relief, and extinction of such aversions appears to be due to similar processes as other forms of conditioning.
|
3 |
Separation of water out of highly concentrated electrolyte solutions using multistage vacuum membrane distillationJiang, Bin January 2013 (has links)
Absorption dehumidification requires regeneration system to regenerate diluted desiccant solutions, which are still highly concentrated. A novel multi-stage vacuum membrane distillation system was applied for separating water out of the highly concentrated solution. The performance of this novel membrane distillation system with high concentration solution is studied, as well as the effect of solution concentration, heating temperature and feed flow rate on concentration increase, permeate flux and specific energy consumption was studied. Feed solutions are LiCl solution (22-30 wt%) and CH3COOK solution (50-60 wt%).Other experimental parameters studied were: heating temperature, 70-80 °C, feed flow rate, 1.2-2.0 l/min. Response surface method is applied for model building, in order to provide a better understanding of the interactions between different parameters. Compared with pure water, high concentration solution has lower vapor pressure, which leads to lower permeate flux. The highest concentration the system can reach is 36.5 wt% for LiCl solution and over 70 wt% for CH3COOK solution, when the heating temperature is 80 °C. Lower concentration and higher heating temperature will result in larger increase in concentration, higher permeate flux and also lower specific energy consumption. But due to the configuration of the system, optimal flow rates can be found under different conditions. Within the testing region, the permeate flux ranges between 0.147-1.802 l/(m2h) for LiCl solution and 0.189-1.263 l/(m2h) for CH3COOK solution. With low concentration, high heating temperature and low feed flow rate, low specific energy consumptions, 0.85 kWh/l and 0.94 kWh/l for LiCl and CH3COOK solutions are observed respectively. With external heating recovery system, this value can be further reduced.
|
4 |
ULTRAFAST PHOTOEXCITATION STUDIES OF CONCENTRATED SOLUTIONS OF ALKALI METAL HALIDESRodrigo, Udaya Indike 03 August 2006 (has links)
No description available.
|
5 |
Valorização da celulose de sisal: uso na preparação de acetatos e de filmes de acetatos de celulose/celulose e quitosana/celulose / Sisal cellulose valorization: utilization for prepared acetates , and cellulose acetates/cellulose and chitosan/cellulose filmsAlmeida, Érika Virginia Raphael de 04 December 2009 (has links)
Filmes foram preparados com êxito dissolvendo e misturando quitosana com celulose de sisal no sistema de solvente NaOH/tiouréia. Nenhum solvente residual foi encontrado nos filmes preparados, conforme mostrado por análise elementar (S) e absorção atômica (Na). Os filmes foram caracterizados por técnicas como espectroscopia na região do infravermelho com transformada Fourier, difração de raios-X e análise térmica (TG, DSC e DMTA). A compatibilidade de ambos biopolímeros foi avaliada por microscopia eletrônica de varredura, em cujas imagens o filme de biocompósito mostrou uma organização intermediária entre a rede de fibra de celulose e a homogeneidade do filme de quitosana. Interações com água foram estudadas por medida de ângulos de contatos de uma gota d\'água com a superfície do filme, isoterma de absorção de umidade e relaxometria de RMN T2. A análise de ângulo de contato mostrou uma deformação que pode ocorrer na superfície devido a alta afinidade destes materiais com a gota d\'água. O sistema de solvente NaOH/tiouréia levou a despolimerização de ambos biopolímeros, mas sem provocar perda da capacidade de formação de filme dos mesmos. Resultados de índice de cristalinidade sugeriram que as interações entre quitosana e o solvente foram mais intensas do que as interações entre celulose e o solvente. Os resultados de relaxometria de RMN T2 do biocompósitos mostrou que as características da quitosana prevaleceram sobre as da celulose no que se refere as interações com água. Acetatos de celulose de sisal com diferentes graus de substituição foram preparados em meio homogêneo (DMAc/LiCl como sistema de solvente) e caracterizados por RMN 1H (determinação do grau de substituição), cromatografia de exclusão por tamanho (determinação da massa molar média) e análise térmica (TG e DSC). Filmes deste acetato de celulose de sisal com diferentes graus de substituição, com e sem reforço de celulose de sisal, foram preparados com êxito a partir de soluções de DMAc/LiCl. Nenhum solvente residual foi encontrado nos filmes preparados, conforme evidenciado por análise elementar (Na) e absorção atômica (Li). Na caracterização dos filmes, foram utilizadas técnicas de análise térmica (DSC, TG e DMTA) e ensaio de tração que mostraram que os filmes de acetatos de celulose mais substituídos apresentam decomposição térmica em temperaturas mais elevada e são menos resistentes a tração que os filmes de acetatos de celulose menos substituídos. A partir da análise de isoterma de absorção de umidade, foi possível constatar que os filmes de acetatos de celulose mais substituídos são consideravelmente menos higroscópicos que os filmes de acetatos de celulose menos substituídos. As imagens de microscopia eletrônica de varredura mostraram que os filmes de acetato com diferentes graus de substituição apresentam morfologia distinta. Tanto a associação de celulose de sisal com quitosana quanto com acetato de celulose, obtido de celulose de sisal, mostrou melhoras nas propriedades dos filmes, gerando um interesse em novas pesquisas e aplicações destes materiais. / Films were successfully prepared by dissolving and mixing chitosan and sisal cellulose in NaOH/thiourea solvent system. No residual solvent was found in the prepared films, as shown by elemental analysis (S) and atomic absorption (NA). They were characterized by conventional techniques such as Fourier Transformed Infrared spectroscopy, X-ray diffractometry and thermal analysis (DSC, TG, DMTA). The compatibility of both biopolymers was evaluated by scanning electron microscopic, in which the biocomposite film showed an organization interposed between the cellulose fiber mesh and chitosan films homogeneity. Water interactions were studied by measuring contact angles, humidity absorption isotherms and NMR T2 relaxometry. Contact angle analysis pointed out the deformation that can occur at the surface due to the high affinity of these materials with the drop of water. The solvent system, NaOH/thiourea, led to depolymerization of both biopolymers, without causing loss of film forming capacities. Results about crystalline-properties index suggested that the interactions between chitosan and solvent were more intense than the interactions between cellulose and solvent. The behavior of the T2 NMR relaxometry of biocomposites showed more evident interaction between chitosan and water compared to cellulose-water interaction. Sisal cellulose acetates with different degrees of substitution (DS) were prepared in homogeneous environment (DMAc/LiCl as solvent) and characterized by NMR 1H (determining the degree of substitution), size exclusion chromatography (determination of molar mass average) and thermal analysis (TG and DSC). Sisal cellulose acetate films of varying degrees of substitution (DS), were successfully prepared using DMAc/LiCl as solvent system, with and without sisal cellulose strengthening. No residual solvent was found in the prepared films, as verified by elemental analysis (Na) and atomic absorption (Li). The characterization of the films were carried out by thermal analysis techniques (DSC, TG and DMTA) and traction test which showed that the cellulose acetate films with bigger DS present thermal decomposition at higher temperatures and are less resistant to traction than cellulose acetate films with smaller DS. From humidity absorption analysis, it was found that the cellulose acetate films with higher DS are considerably less hygroscopic than cellulose acetate films with lower DS. From scanning electron microscopic analysis it was possible to evaluate that acetate films with different DS have distinct morphology. Sisal cellulose association with both chitosan and cellulose acetate obtained from sisal cellulose, showed improvements in the properties of films, generating an interest in new research and applications of these materials.
|
6 |
Valorização da celulose de sisal: uso na preparação de acetatos e de filmes de acetatos de celulose/celulose e quitosana/celulose / Sisal cellulose valorization: utilization for prepared acetates , and cellulose acetates/cellulose and chitosan/cellulose filmsÉrika Virginia Raphael de Almeida 04 December 2009 (has links)
Filmes foram preparados com êxito dissolvendo e misturando quitosana com celulose de sisal no sistema de solvente NaOH/tiouréia. Nenhum solvente residual foi encontrado nos filmes preparados, conforme mostrado por análise elementar (S) e absorção atômica (Na). Os filmes foram caracterizados por técnicas como espectroscopia na região do infravermelho com transformada Fourier, difração de raios-X e análise térmica (TG, DSC e DMTA). A compatibilidade de ambos biopolímeros foi avaliada por microscopia eletrônica de varredura, em cujas imagens o filme de biocompósito mostrou uma organização intermediária entre a rede de fibra de celulose e a homogeneidade do filme de quitosana. Interações com água foram estudadas por medida de ângulos de contatos de uma gota d\'água com a superfície do filme, isoterma de absorção de umidade e relaxometria de RMN T2. A análise de ângulo de contato mostrou uma deformação que pode ocorrer na superfície devido a alta afinidade destes materiais com a gota d\'água. O sistema de solvente NaOH/tiouréia levou a despolimerização de ambos biopolímeros, mas sem provocar perda da capacidade de formação de filme dos mesmos. Resultados de índice de cristalinidade sugeriram que as interações entre quitosana e o solvente foram mais intensas do que as interações entre celulose e o solvente. Os resultados de relaxometria de RMN T2 do biocompósitos mostrou que as características da quitosana prevaleceram sobre as da celulose no que se refere as interações com água. Acetatos de celulose de sisal com diferentes graus de substituição foram preparados em meio homogêneo (DMAc/LiCl como sistema de solvente) e caracterizados por RMN 1H (determinação do grau de substituição), cromatografia de exclusão por tamanho (determinação da massa molar média) e análise térmica (TG e DSC). Filmes deste acetato de celulose de sisal com diferentes graus de substituição, com e sem reforço de celulose de sisal, foram preparados com êxito a partir de soluções de DMAc/LiCl. Nenhum solvente residual foi encontrado nos filmes preparados, conforme evidenciado por análise elementar (Na) e absorção atômica (Li). Na caracterização dos filmes, foram utilizadas técnicas de análise térmica (DSC, TG e DMTA) e ensaio de tração que mostraram que os filmes de acetatos de celulose mais substituídos apresentam decomposição térmica em temperaturas mais elevada e são menos resistentes a tração que os filmes de acetatos de celulose menos substituídos. A partir da análise de isoterma de absorção de umidade, foi possível constatar que os filmes de acetatos de celulose mais substituídos são consideravelmente menos higroscópicos que os filmes de acetatos de celulose menos substituídos. As imagens de microscopia eletrônica de varredura mostraram que os filmes de acetato com diferentes graus de substituição apresentam morfologia distinta. Tanto a associação de celulose de sisal com quitosana quanto com acetato de celulose, obtido de celulose de sisal, mostrou melhoras nas propriedades dos filmes, gerando um interesse em novas pesquisas e aplicações destes materiais. / Films were successfully prepared by dissolving and mixing chitosan and sisal cellulose in NaOH/thiourea solvent system. No residual solvent was found in the prepared films, as shown by elemental analysis (S) and atomic absorption (NA). They were characterized by conventional techniques such as Fourier Transformed Infrared spectroscopy, X-ray diffractometry and thermal analysis (DSC, TG, DMTA). The compatibility of both biopolymers was evaluated by scanning electron microscopic, in which the biocomposite film showed an organization interposed between the cellulose fiber mesh and chitosan films homogeneity. Water interactions were studied by measuring contact angles, humidity absorption isotherms and NMR T2 relaxometry. Contact angle analysis pointed out the deformation that can occur at the surface due to the high affinity of these materials with the drop of water. The solvent system, NaOH/thiourea, led to depolymerization of both biopolymers, without causing loss of film forming capacities. Results about crystalline-properties index suggested that the interactions between chitosan and solvent were more intense than the interactions between cellulose and solvent. The behavior of the T2 NMR relaxometry of biocomposites showed more evident interaction between chitosan and water compared to cellulose-water interaction. Sisal cellulose acetates with different degrees of substitution (DS) were prepared in homogeneous environment (DMAc/LiCl as solvent) and characterized by NMR 1H (determining the degree of substitution), size exclusion chromatography (determination of molar mass average) and thermal analysis (TG and DSC). Sisal cellulose acetate films of varying degrees of substitution (DS), were successfully prepared using DMAc/LiCl as solvent system, with and without sisal cellulose strengthening. No residual solvent was found in the prepared films, as verified by elemental analysis (Na) and atomic absorption (Li). The characterization of the films were carried out by thermal analysis techniques (DSC, TG and DMTA) and traction test which showed that the cellulose acetate films with bigger DS present thermal decomposition at higher temperatures and are less resistant to traction than cellulose acetate films with smaller DS. From humidity absorption analysis, it was found that the cellulose acetate films with higher DS are considerably less hygroscopic than cellulose acetate films with lower DS. From scanning electron microscopic analysis it was possible to evaluate that acetate films with different DS have distinct morphology. Sisal cellulose association with both chitosan and cellulose acetate obtained from sisal cellulose, showed improvements in the properties of films, generating an interest in new research and applications of these materials.
|
7 |
Porovnání dvou nederivatizujících solventních systémů a vliv aditiv / Cellulose dissolution: Comparison of two non-derivatizing solvent systems and the effect of additivesKotov, Nikolay January 2018 (has links)
Title: Cellulose dissolution: Comparison of two non-derivatizing solvent systems and the effect of additives Author: Nikolay Kotov Institute: Institute of Macromolecular Chemistry, Czech Academy of Sciences Supervisor of the doctoral thesis: RNDr. Jiří Dybal, CSc. Consultant: Mgr. Adriana Šturcová, Ph.D. Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Vibrational Spectroscopy Abstract: Cellulose is an abundant renewable material, which processing and applicability is limited owing to cellulose inability to dissolve in commonly used solvents. Only specific solvents or their combinations are able to dissolve cellulose and its dissolution processes remain unclear till nowadays. Aim of this thesis was to acquire new experimental information on the changes which cellulose exhibits upon dissolution in two exemplary solvents: an ionic liquid 1-butyl-3-methylimidazolium chloride (bmimCl) and in an organic solvent N,N-dimethylacetamide (DMAc) with lithium chloride (LiCl). The main tool for that investigation is vibrational spectroscopy which provides valuable information about the polymer structure. Similarities and differences found in the spectra of cellulose in those two solvents and influence of cellulose on the solvents are analyzed. Furthermore, influence of additives on the...
|
8 |
Electrochemical Studies of Cerium and Uranium in LiCl-KCl Eutectic for Fundamentals of Pyroprocessing TechnologyYoon, Dalsung 01 January 2016 (has links)
Understanding the characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important in terms of effective system operation and material accountability for safeguarding pyroprocessing technology. By considering that uranium (U) is the most abundant and important element in the used nuclear fuel, measurements and analyses of U properties were performed in LiCl-KCl eutectic salt. Therefore, the electrochemical techniques such as cyclic voltammetry (CV), open circuit potential (OCP), Tafel, linear polarization (LP), and electrochemical impedance spectroscopy (EIS) were conducted under different experimental conditions to explore the electrochemical, thermodynamic, and kinetic properties of U in LiCl-KCl eutectic. The ultimate goal of this study was to develop proper methodologies for measuring and analyzing the exchange current density (i0) of U3+/U reaction, which has not been fully studied and understood in literature.
In the preliminary study, cerium (Ce) was selected as a surrogate material for uranium and its behavior was being explored with the developments of experimental methods. CV was performed to evaluate Ce properties such as the diffusion coefficients (D), apparent standard reduction potential (E0*), Gibbs free energy (DG), and activity coefficient (g). In addition, EIS methods were adapted and specific experimental procedures were established for the proper i0 measurements providing repeatable and reproducible data sets. The i0 values for Ce3+/Ce pair were ranging from 0.0076 A cm-2 to 0.016 A cm-2, depending on the experimental conditions. These preliminary results give insight in developing the experimental setups and methods to evaluate the properties of U in LiCl-KCl. Plus, Ce is one of the lanthanide (Ln) fission products in electrorefiner (ER) system; therefore, the resulting data values yield useful information of the fundamental behaviors of Ln elements in the system.
Based on these developed methodologies, the experimental designs and routines were established to explore the main properties (e.g., D, E0*, etc.) of UCl3 in LiCl-KCl eutectic salt under different concentrations (0.5 wt% to 4 wt% UCl3) and temperatures (723 K to 798 K). Specially, the i0 values of U3+/U were evaluated via EIS, LP, Tafel, and CV methods. All i0 values had linear trends with the change of concentration and temperature; however, these values measured by LP, Tafel, and CV methods were greatly influenced by the change in electrode surface area. Overall, the i0 values agreed within 33% relative error range with the EIS method being the most consistent and accurate in comparison to reported literature values. The measured values of i0 were ranging from 0.0054 A cm-2 to 0.102 A cm-2. Therefore, an extremely reliable database for i0 was provided and it is feasible to anticipate the i0 kinetics in other experimental conditions by using the provided equation models. Furthermore, GdCl3 was added to the LiCl-KCl-UCl3 system to explore the effects of other elements on the U properties such as the diffusion coefficients, thermodynamic properties, and i0 kinetics. The diffusion coefficient was generally decreased by 12 ~ 35% with addition of GdCl3 in LiCl-KCl-UCl3; however, the apparent standard potentials and exchange current density follow the same trends with data obtained without GdCl3 additions. Hence, the results indicate that the thermodynamic and kinetic values for U3+/U reaction in LiCl-KCl eutectic salt are not greatly influenced by the presence of GdCl3.
|
9 |
Canonical Wg/Wnt pathway regulates Wolbachia intracellular density in DrosophilaHsia, Hsin-Yi 23 November 2016 (has links)
Wolbachia are widely spread, maternally transmitted insect endosymbiotic intracellular bacteria. They have been implicated in the control of several insect transmitted diseases, including dengue, yellow fever, Zika and malaria. Effective pathogen suppression in the insect host is shown to be proportional to the intracellular levels of bacteria. Therefore, understanding the molecular mechanisms underlying Wolbachia accumulation within organisms is extremely important for future epidemic control and research. Using Drosophila as a model insect, our lab has previously observed Wolbachia tropism to stem cell niches. Current work has identified polar cells as an additional site of Wolbachia tropism and demonstrated that Wg/Wnt signaling is important for Wolbachia intracellular accumulation in these somatic cells. In this thesis, we first observed that the Wg/Wnt pathway protein Armadillo also controls Wolbachia levels in the germline cells, indicating the possibility of having a conserved molecular mechanism controlling Wolbachia. Using RNAi and small molecule inhibitors of Shaggy, another component of the canonical Wg/Wnt pathway, we demonstrate that the canonical Wg/Wnt signaling is essential for Wolbachia intracellular accumulation. Our investigation provides fundamental insights into the mechanisms of Wolbachia intracellular accumulation. Furthermore, it offers novel strategies to modulate Wolbachia in non-model insect species, including various disease transmitting Anopheles, Culex, and Aedes. These findings potentially will increase the effectiveness of a Wolbachia-based vector transmitted disease suppression. / 2017-02-28
|
10 |
GSK-3β Promotes PA-Induced Apoptosis Through Changing β-arrestin 2 Nucleus Location in H9c2 CardiomyocytesChang, Fen, Liu, Jing, Fu, Hui, Wang, Jinlan, Li, Fang, Yue, Hongwei, Li, Wenjing, Zhao, Jing, Yin, Deling 01 September 2016 (has links)
Palmitic acid (PA), a type of saturated fatty acids, induces cardiovascular diseases by causing cardiomyocyte apoptosis with unclear mechanisms. Akt participates in PA-induced cardiomyocyte apoptosis. GSK-3β is a substrate of Akt, we investigated its role in PA-induced apoptosis. We reveal that PA inhibits GSK-3β phosphorylation accompanied by inactivation of Akt in H9c2 cardiomyocytes. We also reveal that inhibition the activity of GSK-3β by its inhibitor LiCl or knockdown by siRNA significantly attenuates PA-induced cardiomyocyte apoptosis, this suggesting that GSK-3β plays a pro-apoptotic role. To detect its downstream factors, we analyzed the roles of JNK, p38 MAPK and β-arrestin 2 (β-Arr2). Here, we report that GSK-3β regulate PA-induced cardiomyocyte apoptosis by affecting the distribution of β-Arr2. PA diminishes the protein level of β-Arr2 and changes its distribution from nucleus to cytoplasm. Either inhibition of β-Arr2 by its siRNA or overexpression of its protein level by transfection of β-Arr2 full-length plasmid promotes PA-induced cardiomyocyte apoptosis, which remind us to focus on the changes of its location. β-Arr2 siRNA decreased the background level of β-Arr2 in nucleus in normal H9c2 cells. Overexpression of β-Arr2 increased cytoplasm level of β-Arr2 as PA did. While LiCl, the inhibitor of GSK-3β decreased PA-induced apoptosis, accompany with increased nucleus level of β-Arr2. Then we concluded that GSK-3β is closely associated with cardiomyocyte apoptosis induced by PA, it performs its pro-apoptotic function by affecting the location of β-Arr2. LiCl inhibits PA-induced cardiomyocyte apoptosis, which might provide novel therapeutic for cardiovascular diseases induced by metabolic syndrome.
|
Page generated in 0.0411 seconds