• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1625
  • 918
  • 581
  • 182
  • 164
  • 157
  • 78
  • 54
  • 50
  • 30
  • 30
  • 22
  • 15
  • 14
  • 12
  • Tagged with
  • 4683
  • 690
  • 594
  • 415
  • 391
  • 337
  • 335
  • 333
  • 324
  • 297
  • 290
  • 283
  • 277
  • 269
  • 268
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Analysing the effect of DSM projects at South African cement factories / Johannes Paulus Spangenberg

Spangenberg, Johannes Paulus January 2015 (has links)
In any developing country an increasingly higher demand for electricity supply exists. South Africa experienced load shedding during late 2007 and early 2008 and again in 2014 due to a supply shortfall. New power stations are being built to increase the capacity of the national power grid. However this is a lengthy process. Demand Side Management (DSM) was adopted by Eskom’s Integrated Demand Management (IDM) division. DSM is a short-term solution to stabilise the national grid in South Africa by managing the electricity demand on the consumer’s or client’s side. DSM aims to reduce the electricity consumption with immediate results in the short-term. DSM projects were successfully implemented at nine South African cement factories since 2012. Cement factories are ideal for the implementation of DSM projects for the following reasons: cement factories are energy intensive; have adequate reserve production capacity; sufficient storage capacity and interruptible production schedules. The aim of this study is to analyse the effect of DSM projects at South African cement factories. A detailed understanding of the cement production process is a prerequisite. Therefore a critical review of energy utilisation in the cement industry was conducted. Previous work done in the cement production field is evaluated to identify the possible literature shortfall on DSM projects. A set of five distinctive parameters was derived from the literature survey to quantify the possible effects of DSM projects at cement factories. The parameters are demand reduction and electricity cost; production targets; infrastructure; product quality and sustainability. One cement factory, Factory #1, was selected as a primary case study for the analysis model. Factory #1 was used to determine and quantify the effects of DSM projects at cement factories. A simulation was developed to verify the analysis model outcome. DSM projects were implemented at various factories in South Africa and the results from nine sites were used to validate the aim of this study. The study concluded that most DSM projects at South African cement factories were sustainable. Both the electricity supplier and the factories benefitted from the projects. The funding received from Eskom to implement DSM projects is a short-term initiative. However, sustainability of DSM projects is made possible in the long-term by the substantial electricity cost savings on the client’s or factory’s side. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
442

Analysing the effect of DSM projects at South African cement factories / Johannes Paulus Spangenberg

Spangenberg, Johannes Paulus January 2015 (has links)
In any developing country an increasingly higher demand for electricity supply exists. South Africa experienced load shedding during late 2007 and early 2008 and again in 2014 due to a supply shortfall. New power stations are being built to increase the capacity of the national power grid. However this is a lengthy process. Demand Side Management (DSM) was adopted by Eskom’s Integrated Demand Management (IDM) division. DSM is a short-term solution to stabilise the national grid in South Africa by managing the electricity demand on the consumer’s or client’s side. DSM aims to reduce the electricity consumption with immediate results in the short-term. DSM projects were successfully implemented at nine South African cement factories since 2012. Cement factories are ideal for the implementation of DSM projects for the following reasons: cement factories are energy intensive; have adequate reserve production capacity; sufficient storage capacity and interruptible production schedules. The aim of this study is to analyse the effect of DSM projects at South African cement factories. A detailed understanding of the cement production process is a prerequisite. Therefore a critical review of energy utilisation in the cement industry was conducted. Previous work done in the cement production field is evaluated to identify the possible literature shortfall on DSM projects. A set of five distinctive parameters was derived from the literature survey to quantify the possible effects of DSM projects at cement factories. The parameters are demand reduction and electricity cost; production targets; infrastructure; product quality and sustainability. One cement factory, Factory #1, was selected as a primary case study for the analysis model. Factory #1 was used to determine and quantify the effects of DSM projects at cement factories. A simulation was developed to verify the analysis model outcome. DSM projects were implemented at various factories in South Africa and the results from nine sites were used to validate the aim of this study. The study concluded that most DSM projects at South African cement factories were sustainable. Both the electricity supplier and the factories benefitted from the projects. The funding received from Eskom to implement DSM projects is a short-term initiative. However, sustainability of DSM projects is made possible in the long-term by the substantial electricity cost savings on the client’s or factory’s side. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
443

SOME NEW TECHNIQUES FOR THE LOAD FREQUENCY CONTROL OF MULTI-AREA POWER SYSTEMS.

ABDULLA, ABDULLA I. M. January 1986 (has links)
In this dissertation, the problem of multi-area load frequency control in large power systems is investigated. The load frequency control problem is concerned with the minimization of the deviations in the frequencies of the different areas and in the tie line power exchange between these areas, and is a problem of major importance in the satisfactory operation of large power systems. Some new techniques for designing load frequency control systems are presented through the use of concepts from singular perturbation and hierarchical system theory. To provide appropriate vehicles for the design of the new control systems, state variable models for power systems are developed. These models progress from a two-area interconnected power system model to large scale models comprising of N areas. Two centralized state feedback schemes are proposed for the load frequency control by utilizing the separation of the system models into two time scales. In the first scheme, composite controls and reduced order controls are developed to meet the required performance specifications by. The second scheme is obtained by using the theory of variable structure systems where the existence of a sliding regime leads to the design of a single discontinuous state feedback controller that meets the performance requirements. In order to further improve the performance of the closed loop system, a two level hierarchical control scheme is developed. This consists of a set of local controllers that are designed using either the singular perturbation approach or the variable structure system approach as before and a set of global control functions provided by a higher level controller that attempts to coordinate the local controllers. The interaction prediction principle is used as a tool in the design of the global controller. The performance of the presently developed control schemes is examined in detail for the illustrative cases of a two-area and a three-area power system. From this analysis, it is shown that these controllers provide an improved performance compared to the existing control schemes in reducing the frequency and tie line power deviations.
444

QoS-aware content oriented flow routing in optical computer network

Al-Momin, Mohammed M. Saeed Abdullah January 2013 (has links)
In this thesis, one of the most important issues in the field of networks communication is tackled and addressed. This issue is represented by QoS, where the increasing demand on highquality applications together with the fast increase in the rates of Internet users have led to massive traffic being transmitted on the Internet. This thesis proposes new ideas to manage the flow of this huge traffic in a manner that contributes in improving the communication QoS. This can be achieved by replacing the conventional application-insensitive routing schemes by others which take into account the type of applications when making the routing decision. As a first contribution, the effect on the potential development in the quality of experience on the loading of Basra optical network has been investigated. Furthermore, the traffic due to each application was dealt with in different ways according to their delay and loss sensitivities. Load rate distributions over the various links due to the different applications were deployed to investigate the places of possible congestions in the network and the dominant applications that cause such congestions. In addition, OpenFlow and Optica Burst Switching (OBS) techniques were used to provide a wider range of network controllability and management. A centralised routing protocol that takes into account the available bandwidth, delay, and security as three important QoS parameters, when forwarding traffics of different types, was proposed and implemented using OMNeT++ networks simulator. As a novel idea, security has been incorporated in our QoS requirements by incorporating Oyster Optics Technology (OOT) to secure some of the optical links aiming to supply the network with some secure paths for those applications that have high privacy requirements. A particular type of traffic is to be routed according to the importance of these three QoS parameters for such a traffic type. The link utilisation, end to end delays and securities due to the different applications were recorded to prove the feasibility of our proposed system. In order to decrease the amount of traffic overhead, the same QoS constraints were implemented on a distributed Ant colony based routing. The traditional Ant routing protocol was improved by adopting the idea of Red-Green-Blue (RGB) pheromones routing to incorporate these QoS constraints. Improvements of 11% load balancing, and 9% security for private data was achieved compared to the conventional Ant routing techniques. In addition, this Ant based routing was utilised to propose an improved solution for the routing and wavelength assignment problem in the WDM optical computer networks.
445

Reducing Cognitive Load Using Adaptive Uncertainty Visualization

Block, Gregory 01 January 2013 (has links)
Uncertainty is inherent in many real-world settings; for example, in a combat situation, darkness may prevent a soldier from classifying approaching troops as friendly or hostile. In an environment plagued with uncertainty, decision-support systems, such as sensor-based networks, may make faulty assumptions about field conditions, especially when information is incomplete, or sensor operations are disrupted. Displaying the factors that contribute to uncertainty informs the decision-making process for a human operator, but at the expense of limited cognitive resources, such as attention, memory, and workload. This research applied principles of perceptual cognition to human-computer interface design to introduce uncertainty visualizations in an adaptive approach that improved the operator's decision-making process, without unduly burdening the operator's cognitive load. An adaptive approach to uncertainty visualization considers the cognitive burden of all visualizations, and reduces the visualizations according to relevancy as the user's cognitive load increases. Experiments were performed using 24 volunteer participants using a simulated environment that featured both intrinsic load, and characteristics of uncertainty. The experiments conclusively demonstrated that adaptive uncertainty visualization reduced the cognitive burden on the operator's attention, memory, and workload, resulting in increased accuracy rates, faster response times, and a higher degree of user satisfaction. This research adds to the body of knowledge regarding the use of uncertainty visualization in the context of cognitive load. Existing research has not identified techniques to support uncertainty visualization, without further burdening cognitive load. This research identified principles, such as goal-oriented visualization, and salience, which promote the use of uncertainty visualization for improved decision-making without increasing cognitive load. This research has extensive significance in fields where both uncertainty and cognitive load factors can reduce the effectiveness of decision-makers, such as sensor-based systems used in the military, or in first-responder situations.
446

Demand reduction and responsive strategies for underground mining

Williams, Nicholas Charles January 2014 (has links)
This thesis presents a demand reduction and responsive strategy for underground mining operations. The thesis starts with a literature review and background research on global energy, coal mining and the energy related issues that the mining industry face everyday. The thesis then goes on to discuss underground mine electrical power systems, data acquisition, load profiling, priority ranking, load shedding and demand side management in mining. Other areas presented in this thesis are existing energy reduction techniques, including: high efficiency motors, motor speed reduction and low energy lighting. During the thesis a data acquisition system was designed and installed at a UK Coal colliery and integrated into the mines existing supervisory control and data acquisition (SCADA) system. Design and installation problems were overcome with the construction of a test meter and lab installation and testing. A detailed explanation of the system design and installation along with the data analysis of the data from the installed system. A comprehensive load profile and load characterisation system was developed by the author. The load profiling system is comprehensive allows the definition of any type of load profile. These load profiles are fixed, variable and transient load types. The loads output and electrical demand are all taken into consideration. The load characterisation system developed is also very comprehensive. The LC MATRIX is used with the load profiles and the load characteristics to define off-line schedules. A set of unique real-time decision algorithms are also developed by the author to operate the off-line schedules within the desired objective function. MATLAB Simulation is used to developed and test the systems. Results from these test are presented. Application of the developed load profiling and scheduling systems are applied to the data collected from the mine, the results of this and the cost savings are also presented.
447

Photovoltaic power potential on Gotland: A comparison with load, wind power and power export possibilities

Zaar, Emil January 2016 (has links)
The Swedish Island of Gotland provides an interesting case of how renewable energy technologies can be combined and integrated into the electricity system. The study simulates the load, wind power production and PV power production to estimate the PV power potential for existing buildings on Gotland. The theoretical PV power potential on Gotland is calculated to be 667 MW. The PV power potential is split between 28% for dwelling buildings, 9% for multi-dwelling buildings, 7% for industry and 56% for other buildings. The current limit for wind power on Gotland is 195 MW. With the installed capacity of 194 MW wind power, an additional of 22 MW of PV power is possible to integrate without increasing the hours of overload on the power cable. With the prospected submarine power cable, a total of 529 MW PV power is possible to integrate with the existing 194 MW of wind power.
448

Simulation and Experimental Verification of the Flooding and Draining Process of the Tidal Energy Converter “Deltastream” during Deployment and Recovery

Rocolle, Guillaume 09 1900 (has links)
Deltastream is an on-going project carried by Tidal Energy Limited since almost twenty years. It is a tidal energy converter with a triangular shape and one turbine on each tower. It has gone through many evolutions of design but a first prototype will be installed in the end of 2014 at Ramsey Sound. The deployment and recovery operations will be carried out with a single lift point through a heavy lift frame. Two issues have to be tackled during the operation: the rate of flooding of the ballasts and the tension on the lift crane cable. The most favourable sea state must be found in order to minimise the crane cable tension as well as the best inlets and outlets configuration for the ballasts system. In order to tackle those issues, preliminary analytical work was conducted on the demonstrator to assess the stability during the flooding process. A scaled model was designed and built in order to be tested in a wave-towing tank. The results from the tests highlight that the deployment and the recovery operations are safe for both the barge and Deltastream for the range of wave conditions tested in the tank. However, the sea state has an important impact on the proceeding of the operations, especially the period of the waves.
449

Self organizing networks : building traffic and environment aware wireless systems

Rengarajan, Balaji 21 October 2009 (has links)
This dissertation investigates how to optimize flow-level performance in interference dominated wireless networks serving dynamic traffic loads. The schemes presented in this dissertation adapt to long-term (hours) spatial load variations, and the main metrics of interest are the file transfer delay or average flow throughput and the mean power expended by the transmitters. The first part presents a system level approach to interference management in an infrastructure based wireless network with full frequency reuse. The key idea is to use loose base station coordination that is tailored to the spatial load distribution and the propagation environment to exploit the diversity in a user population's sensitivity to interference. System architecture and abstractions to enable such coordination are developed for both the downlink and the uplink cases, which present differing interference characteristics. The basis for the approach is clustering and aggregation of traffic loads into classes of users with similar interference sensitivities that enable coarse grained information exchange among base stations with greatly reduced communication overheads. The dissertation explores ways to model and optimize the system under dynamic traffic loads where users come and go resulting in interference induced performance coupling across base stations. Based on extensive system-level simulations, I demonstrate load-dependent reductions in file transfer delay ranging from 20-80% as compared to a simple baseline not unlike systems used in the field today, while simultaneously providing more uniform coverage. Average savings in user power consumption of up to 75% are achieved. Performance results under heterogeneous spatial loads illustrate the importance of being traffic and environment aware. The second part studies the impact of policies to associate users with base stations/access points on flow-level performance in interference limited wireless networks. Most research in this area has used static interference models (i.e., neighboring base stations are always active) and resorted to intuitive objectives such as load balancing. In this dissertation, it is shown that this can be counter productive, and that asymmetries in load can lead to significantly better performance in the presence of dynamic interference which couples the transmission rates experienced by users at various base stations. A methodology that can be used to optimize the performance of a class of coupled systems is proposed, and applied to study the user association problem. It is demonstrated that by properly inducing load asymmetries, substantial performance gains can be achieved relative to a load balancing policy (e.g., 15 times reduction in mean delay). A novel measurement based, interference-aware association policy is presented that infers the degree of interference induced coupling and adapts to it. Systematic simulations establish that both the optimized static and interference-sensitive, adaptive association policies substantially outperform various proposed dynamic policies and that these results are robust to changes in file size distributions, channel parameters, and spatial load distributions. / text
450

Generation adequacy assessment of power systems with significant wind generation : a system planning and operations perspective

D'Annunzio, Claudine 03 February 2010 (has links)
One of the great challenges to increasing the use of wind generation is the need to ensure generation adequacy. In this dissertation, we address that need by investigating and assessing the planning and operational generation adequacy of power systems with significant wind generation. At the onset of this dissertation, key metrics are presented for determining a power system’s generation adequacy assessment based on loss-of-load analytical methods. With these key metrics understood, a detailed methodology is put forward on how to integrate wind plants in the assessment’s framework. Then, through the examination of a case study, we demonstrate that wind generation does contribute capacity to the system generation adequacy. Indeed, results indicates that at wind penetration levels of less than 5%, a wind plant’s reliability impact is comparable to an energy equivalent conventional unit. We then show how to quantify a wind plant’s capacity contribution by using the effective load carrying capability metric (ELCC), providing a detailed description of how to implement this metric in the context of wind generation. However, as certain computational setbacks are inherent to the metric, a novel noniterative approximation is proposed and applied to various case studies. The accuracy of the proposed approximation is evaluated in a comparative study by contrasting the resulting estimates to conventionally-computed ELCC values and the wind plant’s capacity factor. The non-iterative method is shown to yield accurate ELCC estimates with relative errors averaging around 2%. Case study findings also suggest the importance of period-specific ELCC calculations to better evaluate the variable capacity contribution of wind plants. Even when considering a well-planned system in which wind generation has been appropriately integrated in the adequacy assessment, wind plants do create significant challenges in maintaining generation adequacy on an operational level. To address these challenges, a novel operational reliability assessment tool is proposed to quantitatively evaluate the system’s operational generation adequacy given potential generator forced outages, load and wind power forecasts, and forecasting deviations. / text

Page generated in 0.0506 seconds