• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1625
  • 918
  • 581
  • 182
  • 164
  • 157
  • 78
  • 54
  • 50
  • 30
  • 30
  • 22
  • 15
  • 14
  • 12
  • Tagged with
  • 4683
  • 690
  • 594
  • 415
  • 391
  • 337
  • 335
  • 333
  • 324
  • 297
  • 290
  • 283
  • 277
  • 269
  • 268
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Energy-aware load balancing approaches to improve energy efficiency on HPC systems / Abordagens de balanceamento de carga ciente de energia para melhorar a eficiência energética em sistemas HPC

Padoin, Edson Luiz January 2016 (has links)
Os atuais sistemas de HPC tem realizado simulações mais complexas possíveis, produzindo benefícios para diversas áreas de pesquisa. Para atender à crescente demanda de processamento dessas simulações, novos equipamentos estão sendo projetados, visando à escala exaflops. Um grande desafio para a construção destes sistemas é a potência que eles vão demandar, onde perspectivas atuais alcançam GigaWatts. Para resolver este problema, esta tese apresenta uma abordagem para aumentar a eficiência energética usando recursos de HPC, objetivando reduzir os efeitos do desequilíbrio de carga e economizar energia. Nós desenvolvemos uma estratégia baseada no consumo de energia, chamada ENERGYLB, que considera características da plataforma, irregularidade e dinamicidade de carga das aplicações para melhorar a eficiência energética. Nossa estratégia leva em conta carga computacional atual e a frequência de clock dos cores, para decidir entre chamar uma estratégia de balanceamento de carga que reduz o desequilíbrio de carga migrando tarefas, ou usar técnicas de DVFS par ajustar as frequências de clock dos cores de acordo com suas cargas computacionais ponderadas. Como as diferentes arquiteturas de processador podem apresentam dois níveis de granularidade de DVFS, DVFS-por-chip ou DVFS-por-core, nós criamos dois diferentes algoritmos para a nossa estratégia. O primeiro, FG-ENERGYLB, permite um controle fino da frequência dos cores em sistemas que possuem algumas dezenas de cores e implementam DVFS-por-core. Por outro lado, CG-ENERGYLB é adequado para plataformas de HPC composto de vários processadores multicore que não permitem tal refinado controle, ou seja, que só executam DVFS-por-chip. Ambas as abordagens exploram desbalanceamentos residuais em aplicações interativas e combinam balanceamento de carga dinâmico com técnicas de DVFS. Assim, eles reduzem a frequência de clock dos cores com menor carga computacional os quais apresentam algum desequilíbrio residual mesmo após as tarefas serem remapeadas. Nós avaliamos a aplicabilidade das nossas abordagens utilizando o ambiente de programação paralela CHARM++ sobre benchmarks e aplicações reais. Resultados experimentais presentaram melhorias no consumo de energia e na demanda potência sobre algoritmos do estado-da-arte. A economia de energia com ENERGYLB usado sozinho foi de até 25% com nosso algoritmo FG-ENERGYLB, e de até 27% com nosso algoritmo CG-ENERGYLB. No entanto, os desequilíbrios residuais ainda estavam presentes após as serem tarefas remapeadas. Neste caso, quando as nossas abordagens foram empregadas em conjunto com outros balanceadores de carga, uma melhoria na economia de energia de até 56% é obtida com FG-ENERGYLB e de até 36% com CG-ENERGYLB. Estas economias foram obtidas através da exploração do desbalanceamento residual em aplicações interativas. Combinando balanceamento de carga dinâmico com DVFS nossa estratégia é capaz de reduzir a demanda de potência média dos sistemas paralelos, reduzir a migração de tarefas entre os recursos disponíveis, e manter o custo de balanceamento de carga baixo. / Current HPC systems have made more complex simulations feasible, yielding benefits to several research areas. To meet the increasing processing demands of these simulations, new equipment is being designed, aiming at the exaflops scale. A major challenge for building these systems is the power that they will require, which current perspectives reach the GigaWatts. To address this problem, this thesis presents an approach to increase the energy efficiency using of HPC resources, aiming to reduce the effects of load imbalance to save energy. We developed an energy-aware strategy, called ENERGYLB, which considers platform characteristics, and the load irregularity and dynamicity of the applications to improve the energy efficiency. Our strategy takes into account the current computational load and clock frequency, to decide whether to call a load balancing strategy that reduces load imbalance by migrating tasks, or use Dynamic Voltage and Frequency Scaling (DVFS) technique to adjust the clock frequencies of the cores according to their weighted loads. As different processor architectures can feature two levels of DVFS granularity, per-chip DVFS or per-core DVFS, we created two different algorithms for our strategy. The first one, FG-ENERGYLB, allows a fine control of the clock frequency of cores in systems that have few tens of cores and feature per-core DVFS control. On the other hand, CGENERGYLB is suitable for HPC platforms composed of several multicore processors that do not allow such a fine-grained control, i.e., that only perform per-chip DVFS. Both approaches exploit residual imbalances on iterative applications and combine dynamic load balancing with DVFS techniques. Thus, they reduce the clock frequency of underloaded computing cores, which experience some residual imbalance even after tasks are remapped. We evaluate the applicability of our approaches using the CHARM++ parallel programming system over benchmarks and real world applications. Experimental results present improvements in energy consumption and power demand over state-of-the-art algorithms. The energy savings with ENERGYLB used alone were up to 25%with our FG-ENERGYLB algorithm, and up to 27%with our CG-ENERGYLB algorithm. Nevertheless, residual imbalances were still present after tasks were remapped. In this case, when our approaches were employed together with these load balancers, an improvement in energy savings of up to 56% is achieved with FG-ENERGYLB and up to 36% with CG-ENERGYLB. These savings were obtained by exploiting residual imbalances on iterative applications. By combining dynamic load balancing with the DVFS technique, our approach is able to reduce the average power demand of parallel systems, reduce the task migration among the available resources, and keep load balancing overheads low.
482

Estudo dos fatores que afetam a transferência de carga em juntas de pavimentos de concreto simples. / Study on the factors affecting load transfer in jointed plain concrete pavements.

Colim, Glenda Maria 11 May 2009 (has links)
Este trabalho de pesquisa foi realizado na busca de melhor entendimento do comportamento estrutural de pavimentos de concreto no que tange a transferência de carga em juntas, de quais os fatores que influenciam essa transferência de esforços nas juntas e a determinação, em caráter preliminar, de como as condições climáticas vigentes na área tropical dos estudos afeta o fenômeno. Para a realização dos experimentos foi empregada a pista experimental USP/FAPESP, construída em 1999, e até então não empregada para a determinação dos efeitos de transferência de cargas em juntas com e sem barra de transferência de carga. Paralelamente, para retroanalisar os parâmetros de transferência de carga, foram necessárias a avaliação e a análise estrutural de respostas a carregamentos dinâmicos das placas de concreto da pista experimental, possibilitando a determinação de diversos parâmetros em jogo, em especial, do módulo de elasticidade de concretos e do módulo de reação do subleito. Os estudos permitiram determinar que a ausência de barras de transferência de cargas em juntas transversais torna menos eficiente tal transferência além de apresentar nesse caso forte dependência da temperatura do concreto. Em juntas com barras de transferência de carga, para qualquer época do ano, a transferência de cargas é sempre igual ou superior a 90%, aproximadamente, independentemente da geometria das placas. Não existindo tais dispositivos o valor da transferência de cargas variou de 60 a 75%. Não foram observadas dependências importantes quanto a diferentes níveis de carregamento durante os testes, bem como para espessuras de placas de concreto, em placas com barras de transferência. Observou-se, também, embora em escala inferior ao que se narra na literatura passada, que o módulo de reação do subleito para carga de borda é maior que aquele para carga de centro. As faixas de valores de módulos de elasticidade para concretos de placas e para concretos compactados com rolo em sub-bases coincidiram com as faixas de valores encontrados em laboratório com medidas efetuadas na época da construção dos pavimentos. O processo de retroanálise com o programa ISLAB2000 mostrou-se um recurso valioso para a parametrização dos pavimentos de concreto estudados. / This research was proposed aiming an in deep study of the mechanism of load transfer across concrete pavement joints including the analysis of which factors influence such load transfers with special regards to the climate factors as concrete temperature. The concrete pavements under study were built in 1999 as a research supported by FAPESP, whose experimental sections has not been used before for such a goal. Backcalculation techniques were employed to analyze deflection data collected with FWD tests over the slabs and it was possible to define values for the test sections materials parameters like concrete modulus of elasticity and the modulus of subgrade reaction. Tests detected loss of load transfer efficiency on the dependence of concrete temperature for non dowelled joints. For dowelled joints, whatever the season of the year or period of the day, joint load transfer efficiency was at least 90% approximately. However, without dowels, efficiency ranged from 60 to 75%. No expressive dependence on the load level was observed during tests, as well as on the slab thicknesses, for cases of dowelled joints. It was observed the increase in the value of the modulus of subgrade reaction when loads were applied in joint position, although not so expressive as sometimes described in the literature. Ranges for concrete and rolled compacted concrete modulus of elasticity resulted similar to former values got from the construction period in laboratory. Therefore, backcalculation procedures using ISLAB2000 software is understood as a valuable tool for concrete slab characterization.
483

GestÃo da QoS em Arquiteturas de Grades Computacionais Orientadas a ServiÃos / "Management of QoS Architectures Service Oriented Grid Computing"

Daniela Medeiros Cedro 06 August 2010 (has links)
A crescente disponibilizaÃÃo de serviÃos atravÃs da Internet vem impondo uma demanda cada vez maior por recursos de processamento no lado servidor favorecendo a utilizaÃÃo dos Clusters de Computadores e das Grades Computacionais. Em paralelo, a engenharia de software traz novos paradigmas, como a OrientaÃÃo a ServiÃos, que impÃem novos desafios a serem tratados pelos fornecedores de serviÃos. A convergÃncia destes fatores deu origem as Arquiteturas de Grades Computacionais Orientadas a ServiÃos. Neste trabalho à apresentada uma proposta de arquitetura em grades computacionais orientada a serviÃos, denominada GDSAC (Grid â DiffServ Admission Control), que trata de aspectos ligados à QoS (Quality of Service) e a diferenciaÃÃo de serviÃos. A arquitetura G-DSAC à uma extensÃo da arquitetura WS-DSAC (Web Servers â DiffServ AdmissionControl). Està extensÃo compreende a concepÃÃo de uma soluÃÃo voltada para grades computacionais que à capaz de garantir os SLAs (Service Level Agreements) estabelecidos com os consumidores de serviÃos utilizando de forma otimizada os recursos de processamento disponibilizados na grade. A soluÃÃo permite ainda a diferenciaÃÃo de serviÃos no que diz respeito aos tempos de resposta oferecidos aos clientes, usuÃrios finais e serviÃos consumidores. A nova arquitetura introduz um bloco de funcionalidades em uma plataforma de grade computacional orientada a serviÃos formada por multclusters. Esse bloco permite a publicaÃÃo e localizaÃÃo de serviÃos, autenticaÃÃo e classificaÃÃo de requisiÃÃes e o escalonamento das mesmas dentro da grade de acordo com a classe de serviÃo a qual pertencem. Foi tambÃm implementado um protÃtipo que permitiu a realizaÃÃo de experimentos em uma plataforma real de testes visando avaliar a capacidade da soluÃÃo em atingir os objetivos por ela proposto
484

Interpretation of Load Transfer Mechanism for Piles in Unsaturated Expansive Soils

Liu, Yunlong 07 February 2019 (has links)
Water infiltration associated with natural precipitation events or other artificial activities such as pipe leaks in expansive soils significantly influence the engineering properties; namely, coefficient of permeability, shear strength and volume change behavior. For this reason, it is challenging to design or construct geotechnical infrastructure within or with expansive soils. Several billions of dollars losses, world-wide, can be attributed to the repairing, redesigning and retrofitting of infrastructure constructed with or within expansive soils, annually. Piles are widely used as foundations in expansive soils extending conventional design procedures based on the principles of saturated soil mechanics. However, the behavior of piles in unsaturated expansive soils is significantly different from conventional non-expansive saturated soils. Three significant changes arise as water infiltrates into expansive soil around the pile. Firstly, soil volume expansion contributes to ground heave in vertical direction. Secondly, volume expansion restriction leads to development of the lateral swelling pressure resulting in an increment in the lateral earth pressure in the horizontal direction. Thirdly, pile-soil interface shear strength properties change due to variations in water content (matric suction) of the surrounding soil. These three changes are closely related to matric suction variations that arise during the water infiltration process. For this reason, a rational methodology is necessary for the pile load transfer mechanism analysis based on the mechanics of unsaturated soils. Studies presented in this thesis are directed towards developing simple methods to predict the load transfer mechanism changes of piles in expansive soils upon infiltration. More emphasis is directed towards the prediction of the pile mechanical behavior which includes the pile head load-displacement relationship, the pile axial force (shaft friction) distribution and the pile base resistance using unsaturated mechanical as a tool. The function of matric suction as an independent stress state variable on the mechanical behavior pile is highlighted. More specifically, following studies were conducted: (i) Previous studies on various factors influencing the load transfer mechanisms of piles in unsaturated expansive soils are summarized and discussed to give a background of current research. More specifically, state-of-the-art reviews are summarized on the application of piles in expansive soils, mobilization of lateral swelling pressure, mobilization of unsaturated pile-soil interface shear strength and methods available for the load transfer analysis of piles in expansive soils. (ii) Employing unsaturated soil mechanics as a tool, theoretical methods are proposed for estimating the lateral earth pressure variations considering the mobilization of lateral swelling pressure. The proposed methods are verified using two large-scale laboratory studies and two field studies from published literatures. (iii) The shear displacement method and load transfer curve methods used traditionally for pile load transfer mechanisms analysis for saturated soils were modified to extend their applications for unsaturated expansive soils. The influence of volume change characteristics and unsaturated soil properties on unsaturated expansive soils are considered in these methods. The validation of the modified shear displacement method and modified load transfer curve method were established using a large-scale model test performed in the geotechnical engineering lab of University of Ottawa and a field case study results from the published literature. (iv) A large-scale model pile infiltration test conducted in a typical expansive soil from Regina in Canada in the geotechnical lab of University of Ottawa is presented and interpreted using the experimental data of volumetric water content suction measurements and shear strength data. The results of the comprehensive experiment studies are also used to validate the proposed modified shear displacement method and modified load transfer curve method achieving reasonable good comparisons. The proposed modified shear displacement method and modified load transfer curve method are simple and require limited number soil properties including the soil water characteristic curve (SWCC), matric suction profile upon wetting and drying and some soil physical properties. Due to these advantages, they can be easily and conveniently applied in engineering practice for prediction of the mechanical behavior of piles in unsaturated expansive soils, which facilitate practicing engineers to produce sound design of pile foundation in unsaturated expansive soils in a simplistic manner.
485

The significance of embrasure design on the fracture load of fixed denture prosthesis: an in vitro study

Albar, Nasreen Hassan 09 January 2019 (has links)
OBJECTIVE: This study evaluated two embrasure designs by measuring their differential effect on load at failure of provisional fixed partial dentures (FPDs) fabricated of five commercially available polymer-based restorative materials. METHODS: Five provisional C&B materials were selected to fabricate FPDs with two different embrasure designs: sharp vs. rounded embrasures (n=12 for each material). The test materials included: Telio CAD (Ivoclar-Vivadent), Coldpac (Motloid), Protemp Plus (3M), VersaTemp (Sultan), and Turbo Temp (Danville). The embrasures were formed using prefabricated cutters with measured Radii (0.002r and 0.03r) and a fixture to hold each provisional FPD in place for the uniform standardized cuts. Molds for the CAD/CAM provisional FPDs were used to fabricate the syringeable temporary materials and form bridges with the same geometric design. All provisional bridges were cemented using Temp-Bond (Kerr) to the corresponding standardized abutments and tested to failure in a universal Instron testing machine by loading each specimen compressively in the mid pontic region. The load at break was recorded in Newton. A one-way analysis of variance (ANOVA) was used to compare the difference in each group’s mean. RESULTS: A significant difference in fracture load was found between the two groups of designs, in which the round embrasure was significantly stronger than was the sharp. A significant difference also was found between the type of temporary material used to fabricate the bridge in the two groups, and except for Coldpac, no significant difference between the embrasure anatomies was found. Fatigue loading did not appear to influence the two bridges’ fracture load, but it did show a significant difference with respect to the modulus of elasticity, in that the bridges that underwent fatigue loading showed a higher elastic modulus by comparison to the control group. Another variable that influenced the modulus of elasticity was the type of temporary material used to fabricate the bridge, in which TelioCAD was found to be the stiffest. However, the embrasure design did not seem to affect the bridges’ rigidity. CONCLUSION: A significant difference was found in fracture strength between the rounded and sharp embrasure design. Except for Coldpac, the rounded embrasure showed higher fracture toughness than did the sharp. No significant correlation was found between the two embrasure designs and the modulus of elasticity. Interestingly, the fatigued bridges that underwent cyclic loading showed a higher modulus of elasticity. The sharp embrasure design showed no fracture in the pontic region, while the rounded design did in 5.47% of the sample. This may be explained by the photoelastic bridges, in which the stress diffuses in the rounded design to include the pontic region, while in the sharp design, the stress is concentrated on the connector area. Stress analysis, both by means of photoelastic and finite element analysis, demonstrated that the bridge with the sharp embrasure design’s stress was high in the connector area compared to the round embrasure design.
486

Standard Feeder and Load Model Synthesis Using Voltage and Current Measurements

January 2018 (has links)
abstract: Until late 1970’s the primary focus in power system modeling has been largely directed towards power system generation and transmission. Over the years, the importance of load modeling grew and having an accurate representation of load played an important role in the planning and operation studies. With an emphasis on tackling the topic of load modeling, this thesis presents the following intermediary steps in developing accurate load models: 1. Synthesis of a three-phase standard feeder and load model using the measured voltages and currents, for events such as faults and feeder pickup cases, obtained at the head of the feeder. 2. Investigated the impact of the synthesized standard feeder and load model on the sub-transmission system for a feeder pick-up case. In the first phase of this project, a standard feeder and load model had been synthesized by capturing the current transients when three-phase voltage measurements (obtained from a local electric utility) are played-in as input to the synthesized model. The comparison between the measured currents and the simulated currents obtained using an electromagnetic transient analysis software (PSCAD) are made at the head of the designed feeder. The synthesized load model has a load composition which includes impedance loads, single-phase induction motor loads and three-phase induction motor loads. The parameters of the motor models are adjusted to obtain a good correspondence between measured three-phase currents and simulated current responses at the head of the feeder when subjected to events under which measurements were obtained on the feeder. These events include faults which occurred upstream of the feeder at a higher voltage level and a feeder pickup event that occurred downstream from the head of the feeder. Two different load compositions have been obtained for this feeder and load model depending on the types of load present in the surrounding area (residential or industrial/commercial). The second phase of this project examines the impact of the feeder pick-up event on the 69 kV sub-transmission system using the obtained standard feeder and load model. Using the 69 kV network data obtained from a local utility, a sub-transmission network has been built in PSCAD. The main difference between the first and second phase of this project is that no measurements are played-in to the model in the latter case. Instead, the feeder pick-up event at a particular substation is simulated using the reduced equivalent of the 69 kV sub-transmission circuit together with the synthesized three-phase models of the feeder and the loads obtained in the first phase of the project. Using this analysis, it is observed that a good correspondence between the PSCAD simulated values of both three-phase voltages and currents with their corresponding measured responses at the substation is achieved. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
487

HIV viral load count as marker for neuropsychological impairment

Botes, Dawid Hermanus January 2000 (has links)
Refer to document
488

The Acquisition of Procedural Skills: An Analysis of the Worked-Example Effect Using Animated Demonstrations

Lewis, David 04 November 2008 (has links)
While many educators suggest active, rather than passive learning, this is not always the best solution, especially when learners are novices. Sweller and Cooper found learners who passively studied worked examples were significantly more efficient than those who actively solved problems (Cooper & Sweller, 1987; Sweller & Cooper, 1985) later described as the "worked-example effect" (Sweller & Chandler, 1991). The current study tested the claims of Lewis (2005) who suggested animated demonstrations act as worked examples. It compared the performance of groups of preservice teachers who: studied animated demonstrations (demo); studied animated demonstrations and practiced procedures (demo+practice & demo2+practice), or practiced procedures (practice). Two MANOVAs were used to compare group performance. During week one, it was hypothesized that the demonstration learners would out-perform those in the practice condition given performance time and accuracy. It was found that there was a significant difference between groups, Wilks’ Λ=0.68, F (2, 68) = 6.83, p <0.0001, η 2 =0.32. Post hoc comparisons with Scheffé’s test (p<0.025) revealed that the demonstration groups (demo+practice and demo2+practice groups) assembled the problem, in significantly less time than the practice group, which is positive evidence for the worked-example effect (Sweller & Chandler, 1991) given animated demonstrations. During week two, a similar MANOVA revealed no differences between groups. While this study considered learner performance from a human computer interaction (HCI) perspective, it also considered learners from a cognitive load perspective, by measuring relative condition efficiency (Paas & van Merriënboer, 1993). In addition, it developed a new measure called performance efficiency. During week one, the demonstration conditions were found to be significantly different F (2, 68) = 3.69, p =0.03, given relative condition efficiency. This is positive evidence of the variability effect. However in post hoc comparisons these instructional conditions were not found to differ. Performance efficiency was found to be significantly different, during week one, F (2, 68) = 12.95, p<0.0001, and post hoc comparisons with Scheffé’s test (p<0.05) revealed the demonstration learners were significantly more efficient, than the practice learners. During week two, groups were not significantly different, so once learners had practiced procedures, they performed equally well.
489

Load Sharing Low Dropout Regulators Using Accurate Current Sensing

January 2017 (has links)
abstract: The growing demand for high performance and power hungry portable electronic devices has resulted in alarmingly serious thermal concerns in recent times. The power management system of such devices has thus become increasingly more vital. An integral component of this system is a Low-Dropout Regulator (LDO) which inherently generates a low-noise power supply. Such power supplies are crucial for noise sensitive analog blocks like analog-to-digital converters, phase locked loops, radio-frequency circuits, etc. At higher output power however, a single LDO suffers from increased heat dissipation leading to thermal issues. This research presents a novel approach to equally and accurately share a large output load current across multiple parallel LDOs to spread the dissipated heat uniformly. The proposed techniques to achieve a high load sharing accuracy of 1% include an innovative fully-integrated accurate current sensing technique based on Dynamic Element Matching and an integrator based servo loop with a low offset feedback amplifier. A novel compensation scheme based on a switched capacitor resistor is referenced to address the high 2A output current specification per LDO across an output voltage range of 1V to 3V. The presented scheme also reduces stringent requirements on off-chip board traces and number of off-chip components thereby making it suitable for portable hand-held systems. The proposed approach can theoretically be extended to any number of parallel LDOs increasing the output current range extensively. The designed load sharing LDO features fast transient response for a low quiescent current consumption of 300µA with a power-supply rejection of 60.7dB at DC. The proposed load sharing technique is verified through extensive simulations for various sources and ranges of mismatch across process, voltage and temperature. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
490

Contact-free Cognitive Load Classification based on Psycho-Physiological Parameters

Gestlöf, Rikard, Sörman, Johannes January 2019 (has links)
Cognitive load (CL) is a concept that describes the relationship between the cognitive demands from a task and the environment the task is taking place in, which influences the user’s cognitive resources. High cognitive load leads to higher chance of a mistake while a user is performing a task. CL has great impact on driving performance, although the effect of CL is task dependent. It has been proven that CL selectively impairs non-automized aspects of driving performance while automized driving tasks are unaffected. The most common way of measuring CL is electroencephalography (EEG), which might be a problem in some situations since its contact-based and must be connected to the head of the test subject. Contact-based ways of measuring different physiological parameters can be a problem since they might affect the results of the research. Since the wirings sometimes might be loose and that the test subject moves etc. However, the biggest concern with contact-based systems is that they are hard to involve practically. The reason for this is simply that a user cannot relax, and that the sensors attached to the test subjects can affect them to not provide normal results. The goal of the research is to test the performance of data gathered with a contact-free camera-based system compared to a contact-based shimmer GSR+ system in detecting cognitive load. Both data collection approaches will extract the heart rate (HR) and interbeat interval (IBI) while test subjects perform different tasks during a controlled experiment. Based on the gathered IBI, 13 different heart rate variability (HRV) features will be extracted to determine different levels of cognitive load.  In order to determine which system that is better at measuring different levels of CL, three major stress level phases were used in a controlled experiment. These three stress level phases were the reference point for low CL where test subjects sat normal (S0), normal CL where the test subjects performed easy puzzles and drove normally in a video game (S1) and high CL where the test subjects completed hard puzzles and drove on the hardest course of a video game while answering math questions (S2). To classify the extracted HRV features from the data into the three different levels of CL two different machine learning (ML) algorithms, support vector machine (SVM) and k-nearest-neighbor (KNN) were implemented. Both binary and multiclass feature matrixes were created with all combinations between the different stress levels of the collected data. In order to get the best classification accuracy with the ML algorithms, different optimizations such as kernelfunctions were chosen for the different feature matrixes. The results of this research proved that the ML algorithms achieved a higher classification accuracy for the data collected with the contact-free system than the shimmer sense system. The highest mean classification accuracy was 81% on binary classification for S0-S2 collected by the camera while driving using Fine KNN. The highest F1 score was 88%, which was achieved with medium gaussian SVM for the class combination S0-(S1/S2) feature matrix recorded with the camera system. It was concluded that the data gathered with the contact-free camera system achieved a higher accuracy than the contact-based system. Also, that KNN achieved the higher accuracy overall, than SVM for the data. This research proves that a contact-free camera-based system can detect cognitive better than a contact-based shimmer sense GSR+ system with a high classification accuracy.

Page generated in 0.0327 seconds