• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 617
  • 192
  • 101
  • 72
  • 70
  • 33
  • 21
  • 19
  • 15
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 1448
  • 248
  • 219
  • 217
  • 191
  • 91
  • 87
  • 81
  • 81
  • 79
  • 73
  • 64
  • 64
  • 64
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
681

Application of ultrasonic welding to the rapid prototyping of microfluidic systems for biotechnology

Aramphongphun, Chuckaphun 31 August 2001 (has links)
This paper introduces an alternative technique for the development of microfluidic systems for biotechnology based on mechanical machining and ultrasonic welding. Advantages of this approach over existing prototyping approaches involving the rapid development of tooling include: (a) short cycle time, (b) design flexibility, and (c) low cost manufacturing. In addition, the process provides a migration path to high volume production. A limitation of this system is that it cannot practically produce microchannels smaller than about 250 μm (0.010 in). However, for many biological cell-based biosensors, this feature scale seems well suited based on cell viability results. Several issues are discussed relevant to this approach, including bond strength, seal leakage, and sterilization. / Graduation date: 2002
682

Fabrication of Controlled Release Devices Using Supercritical Antisolvent Method

Lee, Lai Yeng, Smith, Kenneth A., Wang, Chi-Hwa 01 1900 (has links)
In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This process may be extended to the encapsulation of drugs in these micro and nanoparticles for controlled release purposes. Conventional supercritical antisolvent (SAS) process involves spraying a solution (organic solvent + dissolved polymer) into supercritical fluid (CO[subscript 2]), which acts as an antisolvent. The high rate of mass transfer between organic solvent and supercritical CO[subscript 2] results in supersaturation of the polymer in the spray droplet and precipitation of the polymer as micro or nanoparticles occurs. In the SASEM method, ultrasonic vibration is used to atomize the solution entering the high pressure with supercritical CO[subscript 2]. At the same time, the ultrasonic vibration generated turbulence in the high pressure vessel, leading to better mass transfer between the organic solvent and the supercritical CO₂. In this study, two organic solvents, acetone and dichloromethane (DCM) were used in the SASEM process. Phase Doppler Particle Analyzer (PDPA) was used to study the ultrasonic atomization of liquid using the ultrasonic probe for the SASEM process. Scanning Electron Microscopy (SEM) was used to study the size and morphology of the polymer particles collected at the end of the process. / Singapore-MIT Alliance (SMA)
683

Reliability-based management of fatigue failures

Josi, Georg 06 1900 (has links)
Fatigue assessments have been carried out predominantly with quasi-deterministic approaches, such as the use of SN curves. However, both the loading and the resistance of fatigue prone components are subjected to significant uncertainties. Consequently, a prediction of the remaining fatigue life based on deterministic load and resistance models can lead to unreliable results. This work presents a general reliability-based approach to predict fatigue life of steel components. The approach incorporates prediction of fatigue crack initiation, modeled with a strain-based correlation approach, and propagation, modeled using a linear elastic fracture mechanics approach, and is applicable to new, cracked or repaired structural components. Based on the analysis of existing test results and additional crack initiation and propagation tests on weld metal, the relevant probabilistic fatigue material properties of grade 350WT steel and a matching weld metal were established. An experimental program was carried out on welded details tested either in the as-welded, stress-relieved, conventionally peened, or ultrasonically peened condition. It was demonstrated that ultrasonic peening is superior to the other investigated post weld treatment methods. Using finite element analyses, the results of the tests were deterministically predicted for several different initial conditions, including initial flaw and crack sizes and locations, as well as different levels of residual stresses. A model incorporating an initial flaw and accounting for crack closure and the threshold stress intensity factor range was retained. A probabilistic analysis using Monte Carlo Simulation was carried out to calibrate the relevant parameters. A general reliability-based approach, which includes both the loading and resistance sides of the limit state function was proposed and applied to three practical examples: prediction of test results from two test programs and the prediction of the remaining fatigue life of a cracked component as a function of the safety index. These three applications demonstrated that accurate fatigue life predictions targeting a predefined safety index are achieved. / Structural Engineering
684

Very high cycle fatigue of high performance steels

Kazymyrovych, Vitaliy January 2008 (has links)
Many engineering components reach a finite fatigue life well above 109 load cycles. Some examples of such components are found in airplanes, automobiles or high speed trains. For some materials the fatigue failures have lately been found to occur well after 107 load cycles, namely in the Very High Cycle Fatigue (VHCF) range. This finding contradicted the established concept of fatigue limit for these materials, which postulates that having sustained 107 load cycles the material is capable of enduring an infinite number of cycles provided that the service conditions are unchanged. With the development of modern ultrasonic fatigue testing equipment it became possible to experimentally establish VHCF behaviour of various materials. For most of them the existence of the fatigue limit at 107 load cycles has been proved wrong and their fatigue strength continues to decrease with increasing number of load cycles.   One important group of materials used for the production of high performance components subjected to the VHCF is tool steels. This study explores the VHCF phenomenon using experimental data of ultrasonic fatigue testing of some tool steel grades. The causes and mechanisms of VHCF failures are investigated by means of high resolution scanning electron microscopy, and in relation to the existing theories of fatigue crack initiation and growth. The main type of VHCF origins in steels are slag inclusions. However, other microstructural defects may also initiate fatigue failure. A particular attention is paid to the fatigue crack initiation, as it has been shown that in the VHCF range crack formation consumes the majority of the total fatigue life. Understanding the driving forces for the fatigue crack initiation is a key to improve properties of components used for very long service lives. Finite element modelling of VHCF testing was added as an additional perspective to the study by enabling calculation of local stresses at the fatigue initiating defects.
685

Nonlinear Interaction Between Ultrasonic Waves and Cracks and Interfaces

Poznic, Milan January 2008 (has links)
The subject of this thesis is the development of new ultrasound inspection techniques for detection of cracks that are smaller than the wavelength of the inspecting wave and the characterization of cracks in fluid-filled pipes as either surface-breaking or subsurface. The spectrum of the scattered field of a partially closed crack comprises harmonic components not expected to be found in the case of linear scatterers such as pores or inclusions. Paper A presents an experimental investigation into the linear reflection and generation of the 2nd harmonic component following the incidence of an ultrasonic wave onto a dry or water-confining interface formed by elasto-plastic steel-steel surfaces in contact. The results indicate that water has an unexpected effect on the reflection, at low interfacial pressures, suggesting that fluid mediated forces play a role not accounted for in current models. The level of the generation of the 2nd harmonic measured provides support for further development of the technique for detection of dry, partially closed cracks or fluid-filled, nearly open cracks. A theoretical model describing the nonlinear scattering of acoustic waves by surface-breaking cracks with faces in partial contact is presented in Paper B. Both linear and nonlinear response of the crack are shown to be the largest for a SV wave incident on the surface containing the crack at an angle just above the critical angle for longitudinal waves. A method which provides information on whether a fracture is surface-breaking or subsurface has been modelled and its optimal experimental set-up examined in Paper C. The main assumption of the model is that water carried by pressurized pipes infiltrates and fills a surface-breaking crack, while a subsurface crack is dry. The model simulates an inspection in which the modulation technique is employed and the surface hosting the crack is not accessible. A parameter, constructed with signals recorded in backscattering configuration during a modulation cycle, is examined and shown to provide a clear criterion to distinguish subsurface from surface-breaking cracks when a SV wave at 45 degree incidence is employed as a probe. Finally, in Paper D the modulation technique is experimentally tested on steel beams that host surface-breaking fatigue cracks. The method is shown to be a successful tool to distinguish a dry from a fluid-filled crack. Furthermore, it is revealed that the dynamics of the fluid needs to be accounted for in a more accurate simulation tool. / QC 20100906
686

Integrated electronics design for high-frequency intravascular ultrasound imaging

Gurun, Gokce 19 October 2011 (has links)
Close integration of front-end electronics and the transducer array within the catheter is critical for successful implementation of CMUT-based intravascular ultrasound (IVUS) imaging catheters to enable next generation imaging tools. Therefore, this research developed and implemented custom-designed electronic circuits and systems integrated with an IC compatible transducer technology for realization of miniature IVUS imaging catheters operating at 10-50 MHz frequency range. In one path of this research, an IC is custom designed in a 0.35-um CMOS process to monolithically integrate with a CMUT array (CMUT-on-CMOS) to realize a single-chip, highly-flexible, forward-looking (FL) IVUS imaging system. The amplifiers that are custom-designed achieved transducer thermal-mechanical noise dominated receive performance in a CMUT-on-CMOS implementation. In parallel to the FL-IVUS effort, for realization of a side-looking IVUS catheter based on an annular phased array, a dynamic receive beamformer IC is custom designed also in a 0.35-um CMOS process. Overall, the circuits and systems developed as part of this dissertation form a critical step in the translation of the research on CMUT-based IVUS catheters into real clinical applications for better management of coronary arterial diseases.
687

Effect Of Solid Couplants Made Of Hydrophilic Polymers In Ultrasonic Testing

Cetin, Mustafa Ilker 01 December 2003 (has links) (PDF)
This thesis investigates the effect of hydrophilic polymers as novel solid couplants in ultrasonic inspection. These polymers can absorb large quantities of water, thus become soft and flexible, and also adapt themselves very well to applications. In this study, experiments were carried out by preparing three different types of polymer membranes namely [Poly(HEMA), Poly(HEMA-co-GMA), Poly(HEMA-NN&amp / #8242 / -dH2O)] with different thicknesses and monomer contents. Swelling ratios were determined in deionized water using 9mm diameter samples, cut from each polymer. Ultrasonic velocity and sound attenuation measurements were performed with pulse-echo and immersion techniques. These results were analyzed and compared with water, typical plastics and rubbers. In order to evaluate the coupling performance of hydrophilic polymers, weights of 50g, 200g, 500g and 1 kg were used as loading conditions to change the pressure applied to the transducer. Results obtained with this study showed that hydrophilic polymers offer low attenuation at high frequencies and couple effectively while eliminating the risk of test piece contamination. The study also revealed that velocities of polymers decrease by increasing the water content. This research can be used as a guideline for an alternative choice of couplant while testing water sensitive materials in safety critical structures or where the test piece is avoided from contamination and also can be used for rough surfaces.
688

Interpreting wave propagation in a homogeneous, isotropic, steel cylinder

Stoyko, Darryl Keith 12 January 2005 (has links)
The majority of commercially available ultrasonic transducers used to excite and measure wave propagation in structures can be coupled only to a free surface. While convenient, this method is likely to excite multiple structural modes, making data interpretation difficult. Furthermore, the many modes excited make predicting the structure’s response a computationally intensive task. Here the dynamic radial displacement induced by a transient radial point load is calculated at more than 230,000 points on the outer surface of a virgin steel pipe to simulate a typical experiment. The radial component of the displacement field is calculated by convolving the Green’s functions of the pipe with the transient load. These functions are calculated on personal computers (in a distributed arrangement) by employing modal summation. The mode shapes are obtained from a Semi-Analytical Finite Element formulation used in conjunction with a separation of variables. The results are presented in a four dimensional animation, providing easier interpretations and insight into how to best select observation points for the detection of defects. The accuracy of the calculated displacements is verified experimentally. Agreement is good when magnitude and phase corrections are incorporated from the frequency response curves of the transducers used. / February 2005
689

Condition Assessment of Cemented Materials Using Ultrasonic Surface Waves

Kirlangic, Ahmet Serhan 10 July 2013 (has links)
Mechanical waves provide information about the stiffness and the condition of a medium; thus, changes in medium conditions can be inferred from changes in wave velocity and attenuation. Non-destructive testing (NDT) methods based on ultrasonic waves are often more economical, practical and faster than destructive testing. Multichannel analysis of surface waves (MASW) is a well-established surface wave method used for determination of the shear-wave profile of layered medium. The MASW test configuration is also applicable to assess the condition of concrete elements using appropriate frequency range. Both attenuation and dispersion of ultrasonic waves can be evaluated by this technique. In ultrasonic testing, the characterization of a medium requires the precise measurement of its response to ultrasonic pulses to infer the presence of defects and boundary conditions. However, any ultrasonic transducer attached to a surface affects the measured response; especially at high frequencies. On the other hand, ultrasonic transducers available for engineering application are mostly used to measure wave velocities (travel time method). Therefore, these transducers do not have a flat response in the required frequency range. Moreover, in the case of full-waveform methods, the recorded signals should be normalized with respect to the transfer functions of the transducers to obtain the real response of the tested specimen. The main objective of this research is to establish a comprehensive methodology based on surface wave characteristics (velocity, attenuation and dispersion) for condition assessment of cemented materials with irregular defects. To achieve the major objective, the MASW test configuration is implemented in the ultrasonic frequency range. The measured signals are subjected to various signal processing techniques to extract accurate information. In addition, a calibration procedure is conducted to determine the frequency response functions (FRF) of the piezoelectric accelerometers outside their nominal frequency range. This calibration is performed using a high-frequency laser vibrometer. This research includes three main studies. The first study introduces the calibration approach to measure the FRFs of the accelerometers outside of their flat frequency range. The calibrated accelerometers are then used to perform MASW tests on a cemented-sand medium. The original signals and the corrected ones by eliminating the effect of the FRFs are used to determine material damping of the medium. Although, the damping ratios obtained from different accelerometers are not same, the values from the corrected signals are found closer to the characteristic damping value compared to those from the uncorrected signals. The second study investigates the sensitivity of Rayleigh wave velocity, attenuation coefficient, material damping and dispersion in phase velocity to evaluate the sensitivity of these characteristics to the damage quantity in a medium. The soft cemented-sand medium is preferred as the test specimen so that well-defined shaped defects could be created in the medium. MASW test configuration is implemented on the medium for different cases of defect depth. The recorded signals are processed using different signal processing techniques including Fourier and wavelet transforms and empirical mode decomposition to determine the surface wave characteristics accurately. A new index, ‘dispersion index’, is introduced which quantifies the defect based on the dispersive behaviour. All surface wave characteristics are found capable of reflecting the damage quantity of the test medium at different sensitivity levels. In the final study, the condition assessment of six lab-scale concrete beams with different void percent is performed. The beam specimens involving Styrofoam pellets with different ratios are tested under ultrasonic and mechanical equipment. The assessment produce established in the second study with well-defined defects is pursed for the beams with irregular defects. Among the characteristics, attenuation, P and R-wave velocities and dispersion index are found as the promising characteristics for quantifying the defect volume.
690

Dielectric Properties of Epoxy/Alumina Nanocomposite Influenced by Control of Micrometric Agglomerates

Hayakawa, Naoki, Takei, Masafumi, Hoshina, Yoshikazu, Hanai, Masahiro, Kato, Katsumi, Okubo, Hitoshi, Kurimoto, Muneaki 06 1900 (has links)
No description available.

Page generated in 0.0719 seconds