Spelling suggestions: "subject:"tubulin"" "subject:"3tubulin""
91 |
Exogenous Agmatine Has Neuroprotective Effects Against Restraint-Induced Structural Changes in the Rat BrainZhu, Meng Yang, Wang, Wei P., Cai, Zheng W., Regunathan, Soundar, Ordway, Gregory A. 01 March 2008 (has links)
Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress.
|
92 |
Chronic Treatment With Glucocorticoids Alters Rat Hippocampal and Prefrontal Cortical Morphology in Parallel With Endogenous Agmatine and Arginine Decarboxylase LevelsZhu, Meng Yang, Wang, Wei Ping, Huang, Jingjing, Regunathan, Soundar 01 December 2007 (has links)
In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 μg/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with β-tubulin III. However, 21-day treatment (50 μg/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo.
|
93 |
Pericentrin and Gamma Tubulin Form a Novel Lattice and a Protein Complex that is an Essential Unit of Centrosome Assembly: a DissertationDictenberg, Jason B. 17 December 1999 (has links)
Pericentrin and γ-tubulin are two resident centrosome proteins that are involved in microtubule nucleation and organization. When cytosolic extracts of Xenopus eggs were analyzed on sucrose gradients and gel filtration, the two proteins comigrated on gradients and co-eluted from the column. Immunodepletion of γ-tubulin removed all of the soluble pericentrin. The complex of the two proteins was estimated to be ~3-5 megaDaltons (MD), consisting of a pericentrin complex of ~20S and a γ-tubulin complex of ~25S, presumably the γ-TURC (~2 MD). When analyzed at the centrosome by enhanced deconvolution immunofluorescence the two proteins colocalized within a novel ring-like lattice structure, unlike other centrosome proteins analyzed, and were sufficiently close to generate FRET. The levels of the two proteins increased through the cell cycle, peaking at metaphase, and these changes were accompanied by structural changes in the lattice. Nucleated microtubules appeared to contact lattice elements throughout the centrosome. Inhibition of pericentrin function diminished assembly of γ-tubulin onto centrosomes, as did microtubule depolymerization and inhibition of dynein funciton. Separate fractions of the two proteins showed that pericentrin was required in the form a ~20S complex to bind γ-tubulin and for γ-tubulin assembly and microtubule nucleation. Overexpressed and purified pericentrin from cells eluted as a single polypeptide and was not competent to bind γ-tubulin. These results show that pericentrin in the context of a ~20S complex functions to assemble γ-tubulin into the centrosome lattice, and suggests that the pericentrin complex associated with the γ-TURC consists of an essential unit for centrosome formation.
|
94 |
A Study of the Assembly Mechanism of Pericentrin and γ Tubulin onto the Centrosome in Mammalian Cells: A DissertationYoung, Aaron Isadore 30 July 1999 (has links)
The mechanism for centrosome assembly in somatic cells has previously been proposed to be microtubule independent. Studies presented in this dissertation demonstrate that in somatic cells pericentrin and γ tubulin, two paradigm centrosome proteins, assemble onto the centrosome in a microtubule, and dynein/dynactin dependent manner. High resolution, three-dimensional, time-lapse digital imaging of pericentrin-GFP labeled centrosomes has revealed tiny particles that move vectorally towards the centrosome at rates exceeding 1μm/second. These pericentrin-GFP particles contain γ tubulin and are not readily visible by standard two-dimensional digital imaging microscopy. Further studies have shown that dynein colocalizes with tiny particles of endogenous pericentrin outside of the centrosome which may reflect assembly intermediates in transit towards the centrosome. Furthermore, when dynein function is disrupted in G1 cells by nocodazole treatment, dynamitin overexpression, or dynein IC antibody (70.1) injection, assembly of pericentrin and γ tubulin onto the centrosome throughout the cell cycle is greatly reduced. Moreover, microtubule co-sedimentation studies have demonstrated that pericentrin associates with microtubules in vitro and is dependent on functional dynein/dynactin. Together these data strongly suggest that pericentrin and γ tubulin are novel cargoes of the dynein/dynactin motor complex which transports these proteins -and likely other components of the 3MDa nucleating complex (Dictenberg et al., 1998)- to the centrosome via rnicrotubules.
|
95 |
Flow Cytometric Analysis of Isolated Adult Cardiomyocytes: Vinculin and Tubulin Fluorescence During Metabolic Inhibition and IschemiaArmstrong, Stephen C., Ganote, Charles E. 01 January 1992 (has links)
Immunofluorescence and quantitative flow cytometry was used to determine if alterations in cytoskeletal proteins (vinculin and tubulin) occur during metabolic inhibition and ischemic incubation of isolated adult rat cardiomyocytes. Effects of cell shape changes on fluorescence, were controlled for by the contractile inhibitor, butanedione monoxime (BDM) and gated analysis. Flow cytometry differentiated rod- and round-shaped myocytes on the basis of forward and side scattering. Severe contracture of metabolically inhibited (iodoacetic acid and amytal) myocytes caused an artefactual increase in fluorescence intensity and a redistribution of tubulin into microblebs on the cell surface, which tended to mask specific losses of fluorescence. Fluorescence microscopy showed that round cells stained intensely for vinculin, but not for tubulin and that vinculin redistributed into coarse patches between 60 and 90 min, times which corresponded to small rebounds of fluorescence. With gated analysis, to exclude severely contracted round and squared cells, and with BDM inhibition of contracture, both metabolically inhibited and ischemic pelleted myocytes showed an early decrease in specific immunofluorescence staining for tubulin and vinculin, which preceded loss of cell viability, as determined by trypan blue staining. In both ischemic and metabolically inhibited cells, decreases of vinculin fluorescence preceded or coincided with increasing osmotic fragility. It is concluded that early cytoskeletal alterations of vinculin in ischemic and anoxic injury correlate with the development of osmotic fragility and irreversible myocyte injury.
|
96 |
c-Met Initiates Epithelial Scattering through Transient Calcium Influxes and NFAT-Dependent Gene TranscriptionLangford, Peter R. 13 December 2011 (has links) (PDF)
Hepatocyte growth factor (HGF) signaling drives epithelial cells to scatter by breaking cell-cell adhesions and migrating as solitary cells, a process that parallels epithelial-mesenchymal transition. HGF binds and activates the c-Met receptor tyrosine kinase, but downstream signaling required for scattering remains poorly defined. This study addresses this shortcoming in a number of ways.A high-throughput in vitro drug screen was employed to identify proteins necessary in this HGF-induced signaling. Cells were tested for reactivity to HGF stimulation in a Boyden chamber assay. This tactic yielded several small molecules that block HGF-induced scattering, including a calcium channel blocker. Patch clamping was used to determine the precise effect of HGF stimulation on Ca2+ signaling in MDCK II cells. Cell-attached patch clamping was employed to detect Ca2+ signaling patterns, and channel blockers were used in various combinations to deduce the identity of Ca2+ channels involved in EMT. The results of these experiments show that HGF stimulation results in sudden and transient increases in calcium channel influxes. These increases occur at predictable intervals and rely on proper tubulin polymerization to appear, as determined through the use of a tubulin polymerization inhibitor. Though multiple channels occur in the membranes of MDCK II cells, noticeably TRPV4 and TrpC6, it is TrpC6 that is specifically required for HGF-induced scattering. These HGF-induced calcium influxes through TrpC6 channels drive a transient increase in NFAT-dependent gene transcription which is required for HGF-induced EMT. This was determined through the use of luciferase-based NFAT reporter assays and confirmed through confocal immunofluorescence. Using a small-molecule inhibitor of WNK kinase, it was determined that loss of WNK kinase function is sufficient to prevent HGF-induced EMT. Furthermore, patch-clamp analysis demonstrated that WNK kinase significantly increases channel opening at the surface of MDCK cells, indicating a possible mechanism of action for c-Met inhibition, but leaving doubt as to whether WNK kinase is in fact normally involved in c-Met signaling, or whether it is simply permissive.
|
97 |
Lim Kinase 1 Modulates Expression Of Matrix Metalloproteinases And Associates With Gamma-tubulin: Dual Role In Invasion And MitoTapia, Tenekua 01 January 2007 (has links)
LIM kinase 1 (LIMK1) is a unique dual specificity serine/threonine kinase containing two N-terminal LIM domains in tandem, a PDZ domain and a C-terminal catalytic domain. LIMK1 is involved in modulation of actin cytoskeleton through inactivating phosphorylation of the ADF (actin depolymerization factor) family protein cofilin. Recent studies have shown that LIMK1 is upregulated in breast and prostate cancer cells and tissues, promotes metastasis in animals and induces acquisition of an invasive phenotype when ectopically expressed in benign prostate epithelial (BPH) cells. Furthermore, overexpression of LIMK1 was associated with altered sub cellular localization of the membrane type 1 matrix metalloprotease (MT1-MMP). Matrix metalloproteases (MMPs) are a family of zinc dependant proteolytic enzymes that hydrolyze extra cellular matrix and cell surface molecules. A number of MMPs including MMP-2, MMP-9 and their activator MT1-MMP are over expressed in a variety of cancers including prostate cancer. The abundant expression of these enzymes contributes to changes in the tumor microenvironment, which facilitate degradation of the surrounding collagen matrix and migration of cells through the matrix defects. In this study, we show that MMPs are involved in LIMK1 induced invasion of otherwise non-invasive BPH cells. We also show that (a) the kinase activity of LIMK is not essential for the invasive behavior of the cells and (b) the absence of LIM domains significantly retards cell invasion. We have established transfected sub lines of BPH cells stably expressing 1) constitutively active LIMK1 (BPHLCA), 2) kinase dead LIMK1 (BPHLKD) and 3) only the kinase domain of LIMK1 (BPHLK) for our study. In vitro invasion assays revealed that LIMK1 induced invasion was inhibited by the MMP specific inhibitor, GM6001, and that cells expressing kinase-dead LIMK1 were equally invasive. Furthermore, BPH cells expressing LIMK1 mutants expressed higher amounts of MMP-2 and MMP-9. Substrate zymography revealed increased concentration of secreted MMP-2 and MMP-9 in the media of BPHLCA and BPHLK cells respectively compared to BPHV (vector control) cells. Quantitative RT-PCR also showed a ~10 fold increase in the steady state concentration of MMP-2 in BPHLCA cells compared to the control BPHLV cells. Expression of active LIMK1 stimulated cell-surface expression of MT1-MMP in BPHLCA cells as determined by flow cytometry. A modest increase in expression of MT1-MMP was noted in BPHLKD cells compared to BPHLK and BPHV cells. Immunoflourescence analysis indicated differential localization of MT1-MMP and LIMK1 in BPH cells expressing different mutants of LIMK1. Co-localization of LIMK1 and MT1-MMP in the plasma membrane and in the perinuclear region was also evident in these cells. Furthermore, here we provide evidence that suggests a functional role for phosphorylated (activated) LIMK1/2 (p-LIMK1/2) during mitosis through its association with γ-tubulin. Immunoflourescence analysis showed distinct co-localization of γ -tubulin and p-LIMK1/2 in the centrosomes during mitosis from early prophase to the beginning of telophase. No association was seen in the interphase or in late telophase. Phospho-LIMK1/2 was co-precipitated in immunoprecipitates of γ -tubulin using an anti- γ -tubulin antibody suggesting a physical association between these proteins in a complex. This finding reveals a novel role of LIMK1 in the mitotic process. In summary, our data suggests that MMPs are involved in LIMK1 induced invasion of prostate epithelial cells, and that this effect is mediated through altered expression and activation of specific MMPs. Furthermore, LIMK1 induced invasion is dependant on the presence of LIM domains more than the kinase activity. Finally, we show that phosphorylated LIMK1 and LIMK2 are involved in the mitotic process in a stage specific manner through its association with the centrosomal protein γ -tubulin. Because LIMK1 promotes invasion in vitro, regulates expression of MMPs, and is involved in mitotic processes, it is an attractive drug target for prostate cancer therapy.
|
98 |
Studies of CyP40 and β-tubulin in the Arnt-dependent signaling pathwaysWang, Xiaodong 01 January 2006 (has links) (PDF)
Upon ligand binding, the aryl hydrocarbon receptor (AhR) translocates into the nucleus and dimerizes with its partner Ah receptor nuclear translocator (Arnt). The AhR/Arnt heterodimer binds to the enhancer element DRE to regulate target gene expression. It is known that the formation of the ligand-dependent AhR/Arnt/DRE complex requires protein factors in vitro. The first aim is to determine whether two other Hsp90-associated proteins present in rabbit reticulocyte lysate (RRL), namely CyP40 and Hsp70, play any role in forming the AhR/Arnt/DRE complex. Fractionation and immunodepletion experiments revealed that Hsp70 is not necessary for the formation of this complex. In contrast, CYP40 is involved in forming the complex since (1) immunodepletion of CyP40 from a RRL fraction reduces the intensity of the AhR-Arnt-DRE complex by 48% and (2) recombinant human CyP40 alone causes the formation of this complex. In addition, CyP40-interacting proteins appear to be essential for the full CyP40 effect on the AhR gel shift complex. The second aim is to determine the role of β-tubulin in Amt-dependent signaling pathways. From the insect Sf9 cytosol, β-tubulin enriched fraction (F5) was isolated which suppresses the AhR/Arnt/DRE complex formation in a gel shift assay. Tubulin enriched from pig brain had a similar inhibition of the AhR gel shift complex, suggesting that β-tubulin in F5 is likely responsible for the action. Using the TALON resin, β-tubulin was co-precipitated with the baculovirus 6His-Arnt, showing that β-tubulin interacts with Arnt. β-tubulin was examined to decide its role in the hypoxia inducible factor-1α (HIF-1α) signaling which is also Arnt-dependent. Gel shift data using HIF-1α and Arnt showed that F5 suppressed the formation of the HIF-1α/Arnt/HRE complex. Subsequently the Sf9 β-tubulin was cloned and about 95% of its full-length sequence was identified. The amino acid sequence of Sf9 β-tubulin shares high sequence identity with human β-tubulin. Upon transient transfection of a plasmid containing a human β-tubulin cDNA into MGF7 or Hep3B cells, the HRE-driven luciferase activity was clearly suppressed. In conclusion, we have evidence supporting that β-tubulin inhibits the Arnt-dependent signaling and the mechanism may involve the interaction between Arnt and β-tubulin.
|
99 |
Anisotropic Adaptation of Stem Cells to Changing Mechanical EnvironmentsChang, Hana 22 May 2012 (has links)
No description available.
|
100 |
Putative Role for the GTPase, hGBP-1, in Tumor Cell Proliferation and Resistance to PaclitaxelChowdhury, Shilpi 23 December 2014 (has links)
No description available.
|
Page generated in 0.0589 seconds