• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 827
  • 435
  • 385
  • 85
  • 62
  • 45
  • 44
  • 20
  • 18
  • 17
  • 16
  • 15
  • 10
  • 10
  • 9
  • Tagged with
  • 2292
  • 301
  • 208
  • 203
  • 130
  • 129
  • 109
  • 105
  • 99
  • 92
  • 87
  • 87
  • 86
  • 85
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Bayesian inference for source determination in the atmospheric environment

Keats, William Andrew January 2009 (has links)
In the event of a hazardous release (chemical, biological, or radiological) in an urban environment, monitoring agencies must have the tools to locate and characterize the source of the emission in order to respond and minimize damage. Given a finite and noisy set of concentration measurements, determining the source location, strength and time of release is an ill-posed inverse problem. We treat this problem using Bayesian inference, a framework under which uncertainties in modelled and measured concentrations can be propagated, in a consistent, rigorous manner, toward a final probabilistic estimate for the source. The Bayesian methodology operates independently of the chosen dispersion model, meaning it can be applied equally well to problems in urban environments, at regional scales, or at global scales. Both Lagrangian stochastic (particle-tracking) and Eulerian (fixed-grid, finite-volume) dispersion models have been used successfully. Calculations are accomplished efficiently by using adjoint (backward) dispersion models, which reduces the computational effort required from calculating one [forward] plume per possible source configuration to calculating one [backward] plume per detector. Markov chain Monte Carlo (MCMC) is used to efficiently sample from the posterior distribution for the source parameters; both the Metropolis-Hastings and hybrid Hamiltonian algorithms are used. In this thesis, four applications falling under the rubric of source determination are addressed: dispersion in highly disturbed flow fields characteristic of built-up (urban) environments; dispersion of a nonconservative scalar over flat terrain in a statistically stationary and horizontally homogeneous (turbulent) wind field; optimal placement of an auxiliary detector using a decision-theoretic approach; and source apportionment of particulate matter (PM) using a chemical mass balance (CMB) receptor model. For the first application, the data sets used to validate the proposed methodology include a water-channel simulation of the near-field dispersion of contaminant plumes in a large array of building-like obstacles (Mock Urban Setting Trial) and a full-scale field experiment (Joint Urban 2003) in Oklahoma City. For the second and third applications, the background wind and terrain conditions are based on those encountered during the Project Prairie Grass field experiment; mean concentration and turbulent scalar flux data are synthesized using a Lagrangian stochastic model where necessary. In the fourth and final application, Bayesian source apportionment results are compared to the US Environmental Protection Agency's standard CMB model using a test case involving PM data from Fresno, California. For each of the applications addressed in this thesis, combining Bayesian inference with appropriate computational techniques results in a computationally efficient methodology for performing source determination.
382

Polarization Effects of Mechanical Impacts on Dispersion Compensating Modules

Dumas, Derek 20 May 2009 (has links)
Novel methods and apparatus used to measure high-speed state of polarization changes are developed. Knowledge of the effects of mechanical impacts on the state of polarization will benefit the reliability of optical communication systems. The impact creates a high-speed but continuous motion of the state of polarization over the Poincar´e sphere. The maximum speed at which the state of polarization changes due to an impact is shown to be higher than what has been reported previously. The investigation into the state of polarization changes led to the discovery of the repeatability and elasticity of state of polarization changes due to mechanical impacts. The repeatability and elasticity allow novel measurements of important polarization effects in optical fibres such as high-speed polarization mode dispersion and rotation vector measurements.
383

The Effect of External Stress on the Dispersion Characteristics of Photonic Crystal Fiber

chung, hao-sheng 27 July 2010 (has links)
This paper discussed a way of applied stress to control the photonic crystal fiber dispersion curve, so that it can act on the anomalous dispersion or normal dispersion region area. By this way, we can design the pulse compressor and pulse stretcher for higher peak power laser system. Recently, high-power shortpulse laser has become an indispensable tool in many field, using short-pulse laser oscillator, combined with chirped-frequency amplification technology to produce high-power short-pulse laser system can be used for industrial or medical applications. The all-fiber laser system not only provide better pulse quality and also increased pulse laser system on the stability of the environment.
384

A Theoretical Study to Design an Improved Dispersion Map and the Fiber Effective Area Tolerance for the Long-haul RZ-DPSK System Using the DFF

Kao, Wei-Hsiang 27 June 2011 (has links)
Long-haul optical fiber communication system is an important technology to support the latest broadband communication in the world, and there is strong competition in optical long-haul transmission to achieve high channel bit rates and large transmission capacity. Therefore, it is important to study a technology to improve the performance of such system. As we have already known, return-to-zero differential phase shift keying (RZ-DPSK) is an attractive solution to improve the long distance transmission system performance compared to the conventional on-off keying (OOK) in a 10-Gb/s system, because it has a high nonlinear tolerance. The dispersion flattened fiber (DFF) is attractive for its ability to improve the system performance. Therefore, it is possible to improve the transmission performance by a combination of the RZ-DPSK and the DFF, and one important technology of the current long-haul optical fiber communication system is the dispersion map. And it is widely deployed for already installed undersea optical fiber communication system in the world. A previous study reported that the blockless type dispersion map showed a superior performance than the block type dispersion map, and some efforts to improve the transmission performance of the block type map were conducted. Fundamental idea to improve the transmission performance of the block type map is to reduce the zero crossing points, and one idea is to shift the map toward the positive or the negative cumulative dispersion to reduce the zero crossing points within the map, but it was not so successful. The other idea is to tilt the dispersion map and it was more successful but not good enough. In this master thesis, I continued the study to improve the long-haul RZ-DPSK system performance using the block type dispersion map. One new idea of the dispersion map shifting, the split shifting, was tried, and another new idea of the dispersion map tilting, the split tilting, was examined. The performance with different repeater output power and different compensation scheme within the dispersion map was simulated by a numerical simulator .The goal is, following previous research, to clarify improved dispersion map design of the long-haul RZ-DPSK based transmission and find the effective method to improve the transmission performance. In addition, I also investigate tolerance of the effective area of the transmission fiber theoretically for the long-haul RZ-DPSK system based on the DFF.
385

Comparison of Aermod and ISCST3 Models for Particulate Emissions from Ground Level Sources

Botlaguduru, Venkata Sai V. 2009 December 1900 (has links)
Emission factors (EFs) and results from dispersion models are key components in the air pollution regulatory process. The EPA preferred regulatory model changed from ISCST3 to AERMOD in November, 2007. Emission factors are used in conjunction with dispersion models to predict 24-hour concentrations that are compared to National Ambient Air Quality Standards (NAAQS) for determining the required control systems in permitting sources. This change in regulatory models has had an impact on the regulatory process and the industries regulated. In this study, EFs were developed for regulated particulate matter PM10 and PM2.5 from cotton harvesting. Measured concentrations of TSP and PM10 along with meteorological data were used in conjunction with the dispersion models ISCST3 and AERMOD, to determine the emission fluxes from cotton harvesting. The goal of this research was to document differences in emission factors as a consequence of the models used. The PM10 EFs developed for two-row and six-row pickers were 154 + 43 kg/km2 and 425 + 178 kg/km2, respectively. From the comparison between AERMOD and ISCST3, it was observed that AERMOD EFs were 1.8 times higher than ISCST3 EFs for Emission factors (EFs) and results from dispersion models are key components in the air pollution regulatory process. The EPA preferred regulatory model changed from ISCST3 to AERMOD in November, 2007. Emission factors are used in conjunction with dispersion models to predict 24-hour concentrations that are compared to National Ambient Air Quality Standards (NAAQS) for determining the required control systems in permitting sources. This change in regulatory models has had an impact on the regulatory process and the industries regulated. In this study, EFs were developed for regulated particulate matter PM10 and PM2.5 from cotton harvesting. Measured concentrations of TSP and PM10 along with meteorological data were used in conjunction with the dispersion models ISCST3 and AERMOD, to determine the emission fluxes from cotton harvesting. The goal of this research was to document differences in emission factors as a consequence of the models used. The PM10 EFs developed for two-row and six-row pickers were 154 + 43 kg/km2 and 425 + 178 kg/km2, respectively. From the comparison between AERMOD and ISCST3, it was observed that AERMOD EFs were 1.8 times higher than ISCST3 EFs for absence of solar radiation. Using AERMOD predictions of pollutant concentrations off property for regulatory purposes will likely affect a source?s ability to comply with limits set forth by State Air Pollution Regulatory Agencies (SAPRAs) and could lead to inappropriate regulation of the source.
386

The Effect of Price Information in e-Market on Consumers¡¦ Intentions to Join Group Buying

Yang, Chen-Yuan 19 July 2005 (has links)
Usually, consumers will collect market information about the product before they decide to buy it or not. In other words, the market information is a critical factor to affect consumers¡¦ purchasing intensions and behavior. Previous research points out that when consumers encounter a wider dispersion of price, they will expect to find cheaper stores. Besides, future price is often considered by consumers too. Kauffman et al. (2002) mentioned that the market price information might affect the recruiting of group buying. In a competitive market, if consumers are unable to perceive the utility of discounts provided by group-buying mechanism, they may shop at other retailers¡¦ stores. Further, because the final price of group buying will not be known until the transaction is closed, consumers¡¦ decisions might be up to their prediction about the final price. This study explores how price dispersion and price volatility affect consumers¡¦ internal reference price and expectation of final price of group buying. The difference between the internal reference and expectation of final price of group-buying indicates the consumers¡¦ transaction utility. How transaction utility affects consumers¡¦ intentions to join group buying is another issue being studied. In addition, if there is interference effect of consumers¡¦ risk attitude on final price forecast of group-buying, it¡¦s investigated, too. The result indicates that price dispersion has significant effects on consumers¡¦ all kinds of internal reference prices and predictions about the final price of group buying. However, the price volatility only has significant effects on consumers¡¦ perceived fair price, aspiration price, and reservation price. Neither significant effect of price volatility on consumers¡¦ price prediction of group buying nor interference effect of risk attitude is found. As expected, there is a significant positive causal relationship between transaction utility and intention to join group-buying. It shows that the transaction utility resulting from the comparison between the lowest market price and the most possible final price of group buying has the most explanatory power to predict consumers¡¦ participating intension to join group-buying.
387

Study of Photonic Crystal Fibers using Vector Boundary Element Method

Chao, Chia-Hsin 23 June 2006 (has links)
Based on a full-wave formulation, a vector boundary element method (VBEM) is proposed to model the photonic crystal fibers (PCFs) (microstructured fibers). The accuracy and efficiency of the approach are confirmed by comparing the results calculated with those in previous literatures. With employing the VBEM, the guiding characteristics, including the effective indexes, vector mode patterns, and the polarization properties of the PCFs are investigated. There polarization characteristics of the PCFs with elliptical air holes (EPCFs) and the one ring air-hole EPCF embedded in the step-index core are studied and discussed. In addition, based on the VBEM formulations, a novel and efficient numerical approach to calculate the dispersion parameters of the PCFs is also proposed. The effect of the PCF geometrical structure on the group velocity dispersion property is reviewed, and then the one-ring defect and two-ring defect PCFs are studied and designed for the ultra-flattened dispersion applications. As an example, a four-ring (two-ring defect) PCF with flattened dispersion of ¡Ó0.25 ps/km/nm from 1.295£gm to 1.725£gm wavelength is numerically demonstrated.
388

A study of micro fiber dispersion using digital image analysis

Hendrarsakti, Jooned 15 November 2004 (has links)
The area of the digital image processing is getting more attention in the hope that it will increase the accuracy of any scientific measurements, such as in determining an object velocity, temperature, and size. While human vision is excellent to recognize and differentiate objects, it has been proven to be a poor tool when it comes to measure the object performance. One of many digital image processing applications is texture analysis whose purpose is to evaluate image patterns. The purpose of this dissertation is to investigate the use of texture analysis as a tool to micro fiber dispersion measurement. Micro fiber dispersion can be found in many applications such as in paper and industry powder engineering. Three cases related to micro fiber dispersion were investigated in this study. The first case was the experimental study of the dispersion in open water channel. Sets of synthetic fibers were put into water channel to simulate a process that can be found in papermaking industry. The research investigated the effect of three operating parameters: fluid velocity, fiber consistency, and fiber aspect ratio to fiber dispersion. Using two-factorial experimental design technique, the main and interaction effects of these parameters were evaluated. The study found that increasing fluid velocity, fiber aspect ratio, and consistency decreased the dispersion level. The study also found that the effect of individual parameters is more pronounced than the role of the interactive terms on the fiber flocculation. The second case considered was applying the fiber dispersion analysis to computer-synthesized images consisting of different arrangements of fibers. Four sets of sub-cases were presented. These sub-cases were divided based on the fiber-concentrated location and fiber distribution. The use of computer-synthesized images was found to be very useful to simulate real situation during fiber dispersion. The third case investigated the fiber distribution on a dry paper. Images for different types of paper were taken and evaluated to see the dispersion level of each type of paper. It was found that the current texture analysis was applicable to determine the dispersion level for dry papers. While three cases indicated that the texture analysis can be used to investigate the fiber dispersion, the texture analysis used here is not a perfect and universal method and may not be suitable to analyze other types of dispersions. The human vision will always be essential to determine if the texture analysis is applicable to any other problem.
389

Effects of Internet Market and Merchant Characteristics on Product Retail Price

Yen, Kuo-jui 10 August 2008 (has links)
This paper explores the effect of internet market and merchant characterics. Product retail price is not only a major revenue-driven factor for the seller, but also a key decision factor for the buyer. This research investigates how online retailing prices are affected by maket types and merchant characteristics. A dataset of 3,811 retail price quotes collected from 245 product items at 14 categoris from 880 onlline shopping or auction merchants is collected and analyzed. Major findings are below: 1. The average prices in the B2C market are significant higher than that in the C2C markets. No significant price difference is found between C2C markets that charge fees and free C2C markets. These implies that the auction market reduces product prices but whether the market maker charge service fees has no effect on product pricing. 2. Competitive intensity of a market is found to have significant positive effect on the price dispersion rate. This is consistent with prior research findings but is in conflict with the signle price theory in economics. This is because some vendors may intentionally lower their prices to attract customers, which results in a higher dispersion rate. 3. The reputation of a merchant has significant positive effects on its price dispersion in the B2C market. In auction markets, reputation has positive effect on price dispersion in the higher range, but has negative effect in the lower range. In both markets, merchant size has a positive effect on price dispersion in both markets. 4. Finally, price dispersion and effect of market types and product characteristics vary for different product categories.
390

Studies On Phase Inversion

Deshpande, Kiran B 01 1900 (has links)
Agitated dispersions of one liquid in another immiscible liquid are widely used in chemical industry in operations such as liquid-liquid extraction, suspension polymerisation, and blending of polymers. When holdup of the dispersed phase is increased, in an effort to increase the productivity, at a critical holdup, the dispersed phase catastrophically becomes the continuous phase and vice versa. This phenomenon is known as phase inversion. Although the inversion phenomenon has been studied off and on over the past few decades, the mechanism of phase inversion (PI) has yet not become clear. These studies have however brought out many interesting aspects of PI, besides unravelling the effect of physical and operational variables on PL Experiments show that oil-in-water (o/w) and water-in-oil (w/o) dispersions behave very differently, e.g water drops in w/o dispersions contain oil droplets in them, but oil drops in o/w dispersions contain none, dispersed phase hold up at which inversion occurs increases with agitation speed for w/o dispersions but decreases for o/w dispersions. A common feature of both types of dispersions however is that as agitation speed is increased to high values, inversion holdups reach a constant value. A further increase in agitation speed does not change inversion hold up. Although this finding was first reported a long time ago, the implications it may have not received any attentions. In fact, the work reported in the literature since then does not even mention it. The present work shows that this finding has profound implications. Starting with the finding that at high agitation speed inversion hold up does not change with agitation speed, the present work shows that inversion hold up also does not change with agitator diameter, type of agitator and vessel diameter. In these experiments, carried out in agitated vessel, energy was introduced as a point source. The experiments carried out with turbulent flow in annular region of two coaxial cylinders, inner one rotating, in which energy is introduced nearly uniformly throughout the system, show that the inversion holdup remains unchanged. These results indicate that constant values of inversion holdups for a given liquid-liquid systems (o/w and w/o) are properties of the liquid-liquid systems alone, independent of geometrical and operational parameters. A new hypothesis is proposed to explain the new findings. Phase inversion is considered to occur as a result of imbalance between breakup and coalescence of drops. Electrolytes, which affect only coalescence of drops, were therefore added to the system to investigate the effect of altering coalescence of drops on phase inversion. The experiments performed in the presence of electrolyte KI at various concentrations indicate that addition of electrolyte increases the inversion holdup for both o/w and w/o dispersions for three types of systems: non polar-water, polar-water and immiscible organic-organic. Higher the concentration of electrolyte used, higher was the holdup required for phase inversion. These findings indicate that while the addition of electrolyte increases coalescence of drops in lean dispersions, it has exactly opposite effect on imbalance of breakage and coalescence of drops at high holdups near phase inversion point. The opposite effect of electrolytes in lean and concentrated dispersions could be explained qualitatively, but only in part in the light of a new theory, involving multi-particle interactions. The phase inversion phenomenon is quantified in a simple manner by testing the breakage and coalescence rate expressions available in literature. It has been found that, equilibrium drop size (where breakage and coalescence events are in dynamic equilibrium) approaches infinity near phase inversion holdup which is not an ex perimentally observed fact. To capture the catastrophic nature of phase inversion, two steady state approach is proposed. The two steady states namely the stable steady state and unstable steady state, are achieved by modifying the expression for coalescence frequency on the basis of (i) shear coalescence mechanism and, (ii) recognising the fact that at high dispersed phase holdup the droplets are already in contact with each other at all times and hence rendering the second order coales cence process to a first order one. Using two steady states approach, catastrophic phase inversion is shown to occur at finite drop size.

Page generated in 0.073 seconds