• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 31
  • 2
  • 2
  • Tagged with
  • 81
  • 51
  • 20
  • 18
  • 14
  • 13
  • 13
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Subfilter Scale Modelling for Large Eddy Simulation of Lean Hydrogen-enriched Turbulent Premixed Combustion

Hernandez Perez, Francisco Emanuel 30 August 2011 (has links)
Hydrogen (H2) enrichment of hydrocarbon fuels in lean premixed systems is desirable since it can lead to a progressive reduction in greenhouse-gas emissions, while paving the way towards pure hydrogen combustion. In recent decades, large-eddy simulation (LES) has emerged as a promising tool to computationally describe and represent turbulent combustion processes. However, a considerable complication of LES for turbulent premixed combustion is that chemical reactions occur in a thin reacting layer at small scales which cannot be entirely resolved on computational grids and need to be modelled. In this thesis, subfilter-scale (SFS) modelling for LES of lean H2-enriched methane-air turbulent premixed combustion was investigated. Two- and three-dimensional fully-compressible LES solvers for a thermally perfect reactive mixture of gases were developed and systematically validated. Two modelling strategies for the chemistry-turbulence interaction were pursued: the artificially thickened flame model with a power-law SFS wrinkling approach and the presumed conditional moment (PCM) coupled with the flame prolongation of intrinsic low-dimensional manifold (FPI) chemistry tabulation technique. Freely propagating and Bunsen-type flames corresponding to stoichiometric and lean premixed mixtures were considered. Validation of the LES solvers was carried out by comparing predicted solutions with experimental data and other published numerical results. Head-to-head comparisons of different SFS approaches, including a transported flame surface density (FSD) model, allowed to identify weaknesses and strengths of the various models. Based on the predictive capabilities of the models examined, the PCM-FPI model was selected for the study of hydrogen-enrichment of methane. A new progress of reaction variable was proposed to account for NO. The importance of transporting species with different diffusion coefficients was demonstrated, in particular for H2. The proposed approach was applied to a Bunsen-type configuration, reproducing key features observed in the experiments: the enriched flame was shorter, which is attributed to a faster consumption of the blended fuel; and the enriched flame displayed a broader two-dimensional curvature probability density function. Furthermore, reduced levels of carbon dioxide (CO2), increased levels of nitrogen monoxide (NO), and a slight increase in the carbon monoxide (CO) levels in areas of fully burned gas were predicted for the enriched flame.
42

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil)

McGrath, Arran Thomas 14 December 2011 (has links)
A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding the flow behaviour. A surrogate fuel was developed to mimic the unique chemical and physical properties of bio-oil combustion. The resulting computational model of the burner domain and surrogate fuel was compared with empirical data. The bio-oil model displayed a good agreement with the data in terms of the combustion behaviour, but was limited by the uncertain flow solution associated with the burner used.
43

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil)

McGrath, Arran Thomas 14 December 2011 (has links)
A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding the flow behaviour. A surrogate fuel was developed to mimic the unique chemical and physical properties of bio-oil combustion. The resulting computational model of the burner domain and surrogate fuel was compared with empirical data. The bio-oil model displayed a good agreement with the data in terms of the combustion behaviour, but was limited by the uncertain flow solution associated with the burner used.
44

Towards Application of Selectively Transparent and Conducting Photonic Crystal in Silicon-based BIPV and Micromorph Photovoltaics

Yang, Yang 11 December 2013 (has links)
Selectively-transparent and conducting photonic crystals (STCPCs) made of alternating layers of sputtered indium-tin oxide (ITO) and spin-coated silica (SiO2) nanoparticle films have potential applications in micromorph solar cells and building integrated photovoltaics (BIPVs). In this work, theoretical calculations have been performed to show performance enhancement of the micromorph solar cell upon integration of the STCPC an intermediate reflector. Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with STCPC rear contacts are demonstrated in proof-of-concept devices. A 10% efficiency increase in a 135nm thick a-Si:H cell on an STCPC reflector with Bragg peak at 620nm was observed, while the transmitted solar irradiance and illuminance are determined to be 295W/m2 and 3480 lux, respectively. The STCPC with proper Bragg peak positioning can boost the a-Si:H cell performance while transmitting photons that can be used as heat and lighting sources in building integrated photovoltaic applications.
45

Design and Development of Atmospheric Plasma Sprayed Ceramic Anodes for Solid Oxide Fuel Cells Operating under High Fuel Utilization Conditions

Zarzalejo, Maria 15 November 2013 (has links)
High fuel utilization SOFCs could eliminate emissions from systems that include afterburners and potentially be suitable for carbon sequestration, while producing electricity more efficiently. Current fuel utilization operating points are typically chosen at approximately 85% for Ni-cermet anodes because higher fuel utilization frequently results in the formation of nickel oxide and reduces drastically the performance of the SOFC. In this work the feasibility of an in-plane graded anode architecture with a transition from a material with high catalytic activity to materials more stable under high fuel utilization conditions was evaluated through a steady-state SOFC finite element model. Thereafter, plasma spraying of solution precursor feedstock (SPPS) and suspension feedstock (SPS) was used to fabricate ceramic coatings that could potentially be used as SOFC anodes for high fuel utilization conditions. Microstructural, electrical and electrochemical properties of LST, LSBT and LSFCr coatings with additions of carbon black pore former were investigated.
46

Design and Development of Atmospheric Plasma Sprayed Ceramic Anodes for Solid Oxide Fuel Cells Operating under High Fuel Utilization Conditions

Zarzalejo, Maria 15 November 2013 (has links)
High fuel utilization SOFCs could eliminate emissions from systems that include afterburners and potentially be suitable for carbon sequestration, while producing electricity more efficiently. Current fuel utilization operating points are typically chosen at approximately 85% for Ni-cermet anodes because higher fuel utilization frequently results in the formation of nickel oxide and reduces drastically the performance of the SOFC. In this work the feasibility of an in-plane graded anode architecture with a transition from a material with high catalytic activity to materials more stable under high fuel utilization conditions was evaluated through a steady-state SOFC finite element model. Thereafter, plasma spraying of solution precursor feedstock (SPPS) and suspension feedstock (SPS) was used to fabricate ceramic coatings that could potentially be used as SOFC anodes for high fuel utilization conditions. Microstructural, electrical and electrochemical properties of LST, LSBT and LSFCr coatings with additions of carbon black pore former were investigated.
47

Development of Plasma Sprayed Composite Cathodes for Solid Oxide Fuel Cells

Harris, Jeffrey Peter 07 August 2013 (has links)
Atmospheric plasma spraying is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (600 to 750°C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. Processes were developed to manufacture metal-supported SOFC cathodes by axial-injection plasma spraying. Cathodes consisted of LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) or SSC (Sm0.5Sr0.5CoO3) as the primary material. Initially, the plasma spray process parameters were varied, and x-ray diffraction analyses were performed on the cathode coatings to detect material decomposition and the formation of undesired phases. These results determined the envelope of plasma spray parameters in which coatings of LSCF and SSC can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured. Subsequently, composite cathodes were fabricated by mixing up to 40 wt. % of the ionic conducting SDC (Ce0.8Sm0.2O1.9) material into the feedstock. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency. Electrochemical impedance spectroscopy was performed in symmetrical cells: at 750°C, LSCF-SDC cathodes had polarization resistances as low as 0.101 Ωcm², and SSC cathodes had polarization resistances as low as 0.0056 Ωcm². Finer mixing of the ceramic phases was achieved by using a nano-structured feedstock that contained both LSCF and SDC phases agglomerated together in larger particles. Fuel cells containing a yttria-stabilized zirconia (YSZ) electrolyte and a nickel-YSZ anode were fabricated, and the effect of the cathode microstructure on cell impedance was studied using the analysis of differential impedance spectra. The degradation of composite LSCF-SDC cathodes on porous 430 stainless steel supports was also investigated. To reduce degradation, La2O3 and Y2O3 reactive element oxide coatings were deposited on the internal pore surfaces of the metal supports. As a result, polarization resistance degradation rates as low as 0.00256 Ω·cm2 /1000 h were observed over 100 hours on coated substrates, compared to 0.1 Ω·cm2 /1000 h on uncoated substrates.
48

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System

Zizzo, Ryan 18 February 2010 (has links)
This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly energy simulation models for six different building archetypes were created based on representative building characteristic and energy use data from the Toronto area. A genetic algorithm optimization tool was then created to vary scheduling and production properties of the ATES system and the relative number of different building archetypes. The tool found that a cooling season from weeks 16‐42 maximized the useful energy output of the ATES and resulted in roughly 30% reduction in heating and cooling energy use and associated GHG emissions. It was also found that creating a mix consisting of a higher percentage of larger buildings than is currently found in most neighbourhoods could reduce energy usage by an additional 10%.
49

Temporal De-biasing of Behaviour in Residential Energy Consumption: Supporting Conservation Compliance Through Feedback Design

Trinh, Kevin 11 January 2011 (has links)
Despite years of research in residential energy conservation, means of inducing conservation behaviour through feedback are not well understood. In this thesis I take a novel approach to feedback design by addressing temporal inconsistencies that may hinder individuals from forming an intention to conserve. To help understand conservation compliance strategies, I proposed a visual framework to categorize interventions. I present two design heuristics that were inspired by temporal construal theory (Liberman & Trope, 2003). They were the impetus for the design of three feedback display prototypes, which were examined. Due to methodological limitations, significant improvements to compliance were not found. However, evidence suggests that comparative feedback may have supported reasoning about conservation rather than supporting conservation compliance directly. Future work includes refinement of feedback displays to avoid direct comparisons, exploring the use of nature imagery, and the study of a possible interaction between environmental values and comparative feedback on compliance.
50

Ensuring Safe Exploitation of Wind Turbine Kinetic Energy : An Invariance Kernel Formulation

Rawn, Barry Gordon 21 April 2010 (has links)
This thesis investigates the computation of invariance kernels for planar nonlinear systems with one input, with application to wind turbine stability. Given a known bound on the absolute value of the input variations (possibly around a fixed non-zero value), it is of interest to determine if the system's state can be guaranteed to stay within a desired region K of the state space irrespective of the input variations. The collection of all initial conditions for which trajectories will never exit K irrespective of input variations is called the invariance kernel. This thesis develops theory to characterize the boundary of the invariance kernel and develops an algorithm to compute the exact boundary of the invariance kernel. The algorithm is applied to two simplified wind turbine systems that tap kinetic energy of the turbine to support the frequency of the grid. One system provides power smoothing, and the other provides inertial response. For these models, limits on speed and torque specify a desired region of operation K in the state space, while the wind is represented as a bounded input. The theory developed in the thesis makes it possible to define a measure called the wind disturbance margin. This measure quantifies the largest range of wind variations under which the specified type of grid support may be provided. The wind disturbance margin quantifies how the exploitation of kinetic energy reduces a turbine's tolerance to wind disturbances. The improvement in power smoothing and inertial response made available by the increased speed range of a full converter-interfaced turbine is quantified as an example.

Page generated in 0.0125 seconds