• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 109
  • 49
  • 24
  • 14
  • Tagged with
  • 392
  • 297
  • 293
  • 267
  • 267
  • 238
  • 197
  • 197
  • 194
  • 194
  • 194
  • 146
  • 120
  • 110
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Machine Learning Approaches to Refining Post-translational Modification Predictions and Protein Identifications from Tandem Mass Spectrometry

Chung, Clement 11 December 2012 (has links)
Tandem mass spectrometry (MS/MS) is the dominant approach for large-scale peptide sequencing in high-throughput proteomic profiling studies. The computational analysis of MS/MS spectra involves the identification of peptides from experimental spectra, especially those with post-translational modifications (PTMs), as well as the inference of protein composition based on the putative identified peptides. In this thesis, we tackled two major challenges associated with an MS/MS analysis: 1) the refinement of PTM predictions from MS/MS spectra and 2) the inference of protein composition based on peptide predictions. We proposed two PTM prediction refinement algorithms, PTMClust and its Bayesian nonparametric extension \emph{i}PTMClust, and a protein identification algorithm, pro-HAP, that is based on a novel two-layer hierarchical clustering approach that leverages prior knowledge about protein function. Individually, we show that our two PTM refinement algorithms outperform the state-of-the-art algorithms and our protein identification algorithm performs at par with the state of the art. Collectively, as a demonstration of our end-to-end MS/MS computational analysis of a human chromatin protein complex study, we show that our analysis pipeline can find high confidence putative novel protein complex members. Moreover, it can provide valuable insights into the formation and regulation of protein complexes by detailing the specificity of different PTMs for the members in each complex.
142

A Learning-based Control Architecture for Socially Assistive Robots Providing Cognitive Interventions

Chan, Jeanie 05 December 2011 (has links)
Due to the world’s rapidly growing elderly population, dementia is becoming increasingly prevalent. This poses considerable health, social, and economic concerns as it impacts individuals, families and healthcare systems. Current research has shown that cognitive interventions may slow the decline of or improve brain functioning in older adults. This research investigates the use of intelligent socially assistive robots to engage individuals in person-centered cognitively stimulating activities. Specifically, in this thesis, a novel learning-based control architecture is developed to enable socially assistive robots to act as social motivators during an activity. A hierarchical reinforcement learning approach is used in the architecture so that the robot can learn appropriate assistive behaviours based on activity structure and personalize an interaction based on the individual’s behaviour and user state. Experiments show that the control architecture is effective in determining the robot’s optimal assistive behaviours for a memory game interaction and a meal assistance scenario.
143

Linear, Discrete, and Quadratic Constraints in Single-image 3D Reconstruction

Ecker, Ady 14 February 2011 (has links)
In this thesis, we investigate the formulation, optimization and ambiguities in single-image 3D surface reconstruction from geometric and photometric constraints. We examine linear, discrete and quadratic constraints for shape from planar curves, shape from texture, and shape from shading. The problem of recovering 3D shape from the projection of planar curves on a surface is strongly motivated by perception studies. Applications include single-view modeling and uncalibrated structured light. When the curves intersect, the problem leads to a linear system for which a direct least-squares method is sensitive to noise. We derive a more stable solution and show examples where the same method produces plausible surfaces from the projection of parallel (non-intersecting) planar cross sections. The problem of reconstructing a smooth surface under constraints that have discrete ambiguities arise in areas such as shape from texture, shape from shading, photometric stereo and shape from defocus. While the problem is computationally hard, heuristics based on semidefinite programming may reveal the shape of the surface. Finally, we examine the shape from shading problem without boundary conditions as a polynomial system. This formulation allows, in generic cases, a complete solution for ideal polyhedral objects. For the general case we propose a semidefinite programming relaxation procedure, and an exact line search iterative procedure with a new smoothness term that favors folds at edges. We use this numerical technique to inspect shading ambiguities.
144

A Logical Theory of Joint Ability in the Situation Calculus

Ghaderi, Hojjat 17 February 2011 (has links)
Logic-based formalizations of dynamical systems are central to the field of knowledge representation and reasoning. These formalizations can be used to model agents that act, reason,and perceive in a changing and incompletely known environment. A key aspect of reasoning about agents and their behaviors is the notion of joint ability. A team of agents is jointly able to achieve a goal if despite any incomplete knowledge or even false beliefs about the world or each other, they still know enough to be able to get to a goal state, should they choose to do so. A particularly challenging issue associated with joint ability is how team members can coordinate their actions. Existing approaches often require the agents to communicate to agree on a joint plan. In this thesis, we propose an account of joint ability that supports coordination among agents without requiring communication, and that allows for agents to have incomplete (or even false) beliefs about the world or the beliefs of other agents. We use ideas from game theory to address coordination among agents. We introduce the notion of a strategy for each agent which is basically a plan that the agent knows how to follow. Each agent compares her strategies and iteratively discards those that she believes are not good considering the strategies that the other agents have kept. Our account is developed in the situation calculus, a logical language suitable for representing and reasoning about action and change that is extended to support reasoning about multiple agents. Through several examples involving public, private, and sensing actions, we demonstrate how symbolic proof techniques allow us to reason about team ability despite incomplete specifications about the beliefs of agents.
145

Machine Learning Approaches to Refining Post-translational Modification Predictions and Protein Identifications from Tandem Mass Spectrometry

Chung, Clement 11 December 2012 (has links)
Tandem mass spectrometry (MS/MS) is the dominant approach for large-scale peptide sequencing in high-throughput proteomic profiling studies. The computational analysis of MS/MS spectra involves the identification of peptides from experimental spectra, especially those with post-translational modifications (PTMs), as well as the inference of protein composition based on the putative identified peptides. In this thesis, we tackled two major challenges associated with an MS/MS analysis: 1) the refinement of PTM predictions from MS/MS spectra and 2) the inference of protein composition based on peptide predictions. We proposed two PTM prediction refinement algorithms, PTMClust and its Bayesian nonparametric extension \emph{i}PTMClust, and a protein identification algorithm, pro-HAP, that is based on a novel two-layer hierarchical clustering approach that leverages prior knowledge about protein function. Individually, we show that our two PTM refinement algorithms outperform the state-of-the-art algorithms and our protein identification algorithm performs at par with the state of the art. Collectively, as a demonstration of our end-to-end MS/MS computational analysis of a human chromatin protein complex study, we show that our analysis pipeline can find high confidence putative novel protein complex members. Moreover, it can provide valuable insights into the formation and regulation of protein complexes by detailing the specificity of different PTMs for the members in each complex.
146

A Learning-based Control Architecture for Socially Assistive Robots Providing Cognitive Interventions

Chan, Jeanie 05 December 2011 (has links)
Due to the world’s rapidly growing elderly population, dementia is becoming increasingly prevalent. This poses considerable health, social, and economic concerns as it impacts individuals, families and healthcare systems. Current research has shown that cognitive interventions may slow the decline of or improve brain functioning in older adults. This research investigates the use of intelligent socially assistive robots to engage individuals in person-centered cognitively stimulating activities. Specifically, in this thesis, a novel learning-based control architecture is developed to enable socially assistive robots to act as social motivators during an activity. A hierarchical reinforcement learning approach is used in the architecture so that the robot can learn appropriate assistive behaviours based on activity structure and personalize an interaction based on the individual’s behaviour and user state. Experiments show that the control architecture is effective in determining the robot’s optimal assistive behaviours for a memory game interaction and a meal assistance scenario.
147

Contribution de la motivation dans les jeux sérieux

Derbali, Lotfi 03 1900 (has links)
La motivation incite les apprenants à s’engager dans une activité et à persévérer dans son accomplissement afin d’atteindre un but. Dans les Systèmes Tutoriels Intelligents (STI), les études sur la motivation des apprenants possèdent trois manques importants : un manque de moyens objectifs et fiables pour évaluer cet état, un manque d’évaluation de rôles joués par les facteurs motivationnels conçus dans l’environnement d’apprentissage et un manque de stratégies d’interventions motivationnelles pour soutenir la motivation des apprenants. Dans cette thèse, nous nous intéressons à mieux comprendre l’état de la motivation des apprenant ainsi que les facteurs et stratégies motivationnels dans un environnement d’apprentissage captivant : les jeux sérieux. Dans une première étude, nous évaluons la motivation des apprenants par l’entremise d’un modèle théorique de la motivation (ARCS de Keller) et de données électro-physiologiques (la conductivité de la peau, le rythme cardiaque et l’activité cérébrale). Nous déterminons et évaluons aussi quelques situations ou stratégies favorisant la motivation dans l’environnement des jeux sérieux étudié. Dans une deuxième étude, nous développons un prototype de jeux sérieux intégrant – dans une première version – quelques éléments motivationnels issus de jeux vidéo et – dans une deuxième version – des stratégies motivationnelles d’un modèle théorique de la motivation. Nous espérons, avec une évaluation motivationnelle de notre prototype, soutenir les apprenants à atteindre des hauts niveaux de motivation, de persévérance et de performance. / Motivation encourages learners to be engaged in an activity and to persevere in its accomplishment in order to achieve a goal. In Intelligent Tutoring Systems (ITS), different studies of learners’ motivation have showed three major lacks: a lack of objective and reliable means to assess this state, a lack of evaluation of the roles played by motivational factors developed by learning environments, and a lack of motivational interventions to support learners’ motivation. In this thesis, we are interested in understanding the state of motivation, as well as motivational factors and strategies in an exciting learning environment: serious games. First, we carry out an empirical study to assess learners’ motivation using Keller’s ARCS psychological model combined with electro-physiological recordings, namely skin conductance, heart rate, and brain activity. We also identify and evaluate different situations and strategies that promote motivation in a serious game environment. Second, we develop a serious game which has some motivational elements (version 1) as well as different motivational strategies (version 2). Our serious game intends to support learners to rich high levels of motivation, perseverance and performance. We conduct an empirical assessment of learners’ motivation during interaction with our serious game.
148

Virtual Sophrologist : un système de formation de relaxation par neurofeedback en réalité virtuelle

Gu, Guoxin 03 1900 (has links)
No description available.
149

Learning to sample from noise with deep generative models

Bordes, Florian 08 1900 (has links)
L’apprentissage automatique et spécialement l’apprentissage profond se sont imposés ces dernières années pour résoudre une large variété de tâches. Une des applications les plus remarquables concerne la vision par ordinateur. Les systèmes de détection ou de classification ont connu des avancées majeurs grâce a l’apprentissage profond. Cependant, il reste de nombreux obstacles à une compréhension du monde similaire aux être vivants. Ces derniers n’ont pas besoin de labels pour classifier, pour extraire des caractéristiques du monde réel. L’apprentissage non supervisé est un des axes de recherche qui se concentre sur la résolution de ce problème. Dans ce mémoire, je présente un nouveau moyen d’entrainer des réseaux de neurones de manière non supervisée. Je présente une méthode permettant d’échantillonner de manière itérative a partir de bruit afin de générer des données qui se rapprochent des données d’entrainement. Cette procédure itérative s’appelle l’entrainement par infusion qui est une nouvelle approche permettant d’apprendre l’opérateur de transition d’une chaine de Markov. Dans le premier chapitre, j’introduis des bases concernant l’apprentissage automatique et la théorie des probabilités. Dans le second chapitre, j’expose les modèles génératifs qui ont inspiré ce travail. Dans le troisième et dernier chapitre, je présente comment améliorer l’échantillonnage dans les modèles génératifs avec l’entrainement par infusion. / Machine learning and specifically deep learning has made significant breakthroughs in recent years concerning different tasks. One well known application of deep learning is computer vision. Tasks such as detection or classification are nearly considered solved by the community. However, training state-of-the-art models for such tasks requires to have labels associated to the data we want to classify. A more general goal is, similarly to animal brains, to be able to design algorithms that can extract meaningful features from data that aren’t labeled. Unsupervised learning is one of the axes that try to solve this problem. In this thesis, I present a new way to train a neural network as a generative model capable of generating quality samples (a task akin to imagining). I explain how by starting from noise, it is possible to get samples which are close to the training data. This iterative procedure is called Infusion training and is a novel approach to learning the transition operator of a generative Markov chain. In the first chapter, I present some background about machine learning and probabilistic models. The second chapter presents generative models that inspired this work. The third and last chapter presents and investigates our novel approach to learn a generative model with Infusion training.
150

Multi-modal expression recognition

Chandrapati, Srivardhan January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Akira T. Tokuhiro / Robots will eventually become common everyday items. However before this becomes a reality, robots would need to learn be socially interactive. Since humans communicate much more information through expression than through actual spoken words, expression recognition is an important aspect in the development of social robots. Automatic recognition of emotional expressions has a number of potential applications other than just social robots. It can be used in systems that make sure the operator is alert at all times, or it can be used for psycho-analysis or cognitive studies. Emotional expressions are not always deliberate and can also occur without the person being aware of them. Recognizing these involuntary expressions provide an insight into the persons thought, state of mind and could be used as indicators for a hidden intent. In this research we developed an initial multi-modal emotion recognition system using cues from emotional expressions in face and voice. This is achieved by extracting features from each of the modalities using signal processing techniques, and then classifying these features with the help of artificial neural networks. The features extracted from the face are the eyes, eyebrows, mouth and nose; this is done using image processing techniques such as seeded region growing algorithm, particle swarm optimization and general properties of the feature being extracted. In contrast features of interest in speech are pitch, formant frequencies and mel spectrum along with some statistical properties such as mean and median and also the rate of change of these properties. These features are extracted using techniques such as Fourier transform and linear predictive coding. We have developed a toolbox that can read an audio and/or video file and perform emotion recognition on the face in the video and speech in the audio channel. The features extracted from the face and voices are independently classified into emotions using two separate feed forward type of artificial neural networks. This toolbox then presents the output of the artificial neural networks from one/both the modalities on a synchronized time scale. Some interesting results from this research is consistent misclassification of facial expressions between two databases, suggesting a cultural basis for this confusion. Addition of voice component has been shown to partially help in better classification.

Page generated in 0.0139 seconds