• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 375
  • 150
  • Tagged with
  • 526
  • 523
  • 390
  • 379
  • 173
  • 126
  • 125
  • 105
  • 103
  • 97
  • 97
  • 97
  • 75
  • 74
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Meeraner Blatt

17 March 2015 (has links) (PDF)
No description available.
102

Meeraner Blatt

17 March 2015 (has links) (PDF)
No description available.
103

Meeraner Blatt

17 March 2015 (has links) (PDF)
No description available.
104

Meeraner Blatt

17 March 2015 (has links) (PDF)
No description available.
105

Meeraner Blatt

17 March 2015 (has links) (PDF)
No description available.
106

Knowing what exists ...

Geck, Karl Wilhelm 26 November 2014 (has links) (PDF)
Maß der Dinge in puncto Dokumentation von Musikmanuskripten ist der Online-Verbundkatalog http://opac.rism.info. Seit seiner Freischaltung im Jahre 2010 ist er das globale Schaufenster von RISM, ausgeschrieben Répertoire International des Sources Musicales oder Internationales Quellenlexikon der Musik. Das bislang in 34 Ländern tätige Vorhaben widmet sich der Erschließung der jeweiligen historischen Musikalien. Die hergestellten Katalogisate werden an die RISM-Zentralredaktion in Frankfurt/Main übermittelt, die sie redaktionell bearbeitet und veröffentlicht (vgl. BIS 201, H. 3, S. 180–182).
107

Meeraner Blatt

24 February 2015 (has links) (PDF)
No description available.
108

PhenoFam-gene set enrichment analysis through protein structural information

Paszkowski-Rogacz, Maciej, Buchholz, Frank, Slabicki, Mikolaj, Pisabarro, Maria Teresa 04 January 2016 (has links) (PDF)
Background With the current technological advances in high-throughput biology, the necessity to develop tools that help to analyse the massive amount of data being generated is evident. A powerful method of inspecting large-scale data sets is gene set enrichment analysis (GSEA) and investigation of protein structural features can guide determining the function of individual genes. However, a convenient tool that combines these two features to aid in high-throughput data analysis has not been developed yet. In order to fill this niche, we developed the user-friendly, web-based application, PhenoFam. Results PhenoFam performs gene set enrichment analysis by employing structural and functional information on families of protein domains as annotation terms. Our tool is designed to analyse complete sets of results from quantitative high-throughput studies (gene expression microarrays, functional RNAi screens, etc.) without prior pre-filtering or hits-selection steps. PhenoFam utilizes Ensembl databases to link a list of user-provided identifiers with protein features from the InterPro database, and assesses whether results associated with individual domains differ significantly from the overall population. To demonstrate the utility of PhenoFam we analysed a genome-wide RNA interference screen and discovered a novel function of plexins containing the cytoplasmic RasGAP domain. Furthermore, a PhenoFam analysis of breast cancer gene expression profiles revealed a link between breast carcinoma and altered expression of PX domain containing proteins. Conclusions PhenoFam provides a user-friendly, easily accessible web interface to perform GSEA based on high-throughput data sets and structural-functional protein information, and therefore aids in functional annotation of genes.
109

Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro

Ordemann, Rainer, Jing, Duohui, Fonseca, Ana-Violeta, Alakel, Nael, Fierro, Fernando A., Muller, Katrin, Bornhauser, Martin, Ehninger, Gerhard, Corbeil, Denis 04 January 2016 (has links) (PDF)
Background Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and ‘stemness’ of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion. Design and Methods In the co-culture system, we defined three distinct localizations of hematopoietic stem cells relative to the mesenchymal stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the mesenchymal stromal cells (phase-dim cells). Cell cycle, proliferation, cell division and immunophenotype of these three cell fractions were evaluated from day 1 to 7. Results Phase-bright cells contained the highest proportion of cycling progenitors during co-culture. In contrast, phase-dim cells divided much more slowly and retained a more immature phenotype compared to the other cell fractions. The phase-dim compartment was soon enriched for CD34+/CD38− cells. Migration beneath the mesenchymal stromal cell layer could be hampered by inhibiting integrin β1 or CXCR4. Conclusions Our data suggest that the mesenchymal stromal cell surface is the predominant site of proliferation of hematopoietic stem cells, whereas the compartment beneath the mesenchymal stromal cell layer seems to mimic the stem cell niche for more immature cells. The SDF-1/CXCR4 interaction and integrin-mediated cell adhesion play important roles in the distribution of hematopoietic stem cells in the co-culture system.
110

Single-stranded heteroduplex intermediates in lambda Red homologous recombination

Stewart, A. Francis, Maresca, Marcello, Erler, Axel, Friedrich, Anne, Fu, Jun, Zhang, Youming 01 October 2015 (has links) (PDF)
Background The Red proteins of lambda phage mediate probably the simplest and most efficient homologous recombination reactions yet described. However the mechanism of dsDNA recombination remains undefined. Results Here we show that the Red proteins can act via full length single stranded intermediates to establish single stranded heteroduplexes at the replication fork. We created asymmetrically digestible dsDNA substrates by exploiting the fact that Redα exonuclease activity requires a 5' phosphorylated end, or is blocked by phosphothioates. Using these substrates, we found that the most efficient configuration for dsDNA recombination occurred when the strand that can prime Okazaki-like synthesis contained both homology regions on the same ssDNA molecule. Furthermore, we show that Red recombination requires replication of the target molecule. Conclusions Hence we propose a new model for dsDNA recombination, termed "beta" recombination, based on the formation of ssDNA heteroduplexes at the replication fork. Implications of the model were tested using (i) an in situ assay for recombination, which showed that recombination generated mixed wild type and recombinant colonies; and (ii) the predicted asymmetries of the homology arms, which showed that recombination is more sensitive to non-homologies attached to 5' than 3' ends. Whereas beta recombination can generate deletions in target BACs of at least 50 kb at about the same efficiency as small deletions, the converse event of insertion is very sensitive to increasing size. Insertions up to 3 kb are most efficiently achieved using beta recombination, however at greater sizes, an alternative Red-mediated mechanism(s) appears to be equally efficient. These findings define a new intermediate in homologous recombination, which also has practical implications for recombineering with the Red proteins.

Page generated in 0.0386 seconds