• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 68
  • 25
  • 16
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Strukturní charakterizace lidské proteinkinasy CaMKK2 a jejích interakcí s vazebnými partnery / Structural characterization of human protein kinase CaMKK2 and its interactions with binding partners

Koupilová, Nicola January 2021 (has links)
5 Abstract Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) belongs to the serine/ threonine protein kinase family, which is involved in the calcium signaling pathway. The increase of intracellular calcium concentration induces the activation of calmodulin (CaM), which then activates its binding partners including CaMKII, CaMKIII, CaMKK1 and CaMKK2. CaMKK2 activates CaMKI, CaMKIV and AMP-dependent kinase, AMPK, by phosphorylation. CaMKK2 is naturally present in cells in an autoinhibited state, which is caused by the steric hindrance of the active site by the autoinhibitory domain. When calmodulin binds to the calmodulin-binding domain, the autoinhibitory domain is removed and the active site becomes accessible. Upon activation, CaMKK2 undergoes autophosphorylation, which increases its enzyme activity. Negative regulation of CaMKK2 is mediated by cAMP-dependent protein kinase A (PKA)- and GSK3-dependent phosphorylation. Sites phosphorylated by PKA have been identified for both CaMKK1 and CaMKK2. Two of them are also motifs recognized by scaffolding 14-3-3 proteins. Previous studies have shown that the 14-3-3 protein binding maintains phosphorylated CaMKK2 in an inhibited state by blocking the dephosphorylation of S495, which prevents the binding to calmodulin. However, it is unclear if it is the...
22

P53 suppresses expression of the 14-3-3gamma oncogene

Radhakrishnan, Vijayababu, Putnam, Charles, Qi, Wenqing, Martinez, Jesse January 2011 (has links)
BACKGROUND:14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro.METHODS:qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC). Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter.RESULTS:Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression.CONCLUSION:Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.
23

Exoenzyme S of Pseudomonas aeruginosa : cellular targets and interaction with 14-3-3

Yasmin, Lubna January 2007 (has links)
Pseudomonas aeruginosa is an opportunistic pathogen that is a serious problem for immuno-compromised patients. Toxins such as exoenzyme (Exo) S, ExoT, ExoY and ExoU are secreted and translocated from the bacteria into the eukaryotic cell via the bacterial encoded type III secretion system. Our research focuses on ExoS, a bifunctional toxin comprising a Rho-GTPase-activating protein domain (RhoGAP) and a 14-3-3 dependent ADP-ribosyltransferase domain. In addition, ExoS contains a membrane localization domain termed MLD. In this study, cell lines expressing activated forms of various components of the Ras signaling pathway have been used to understand the functional and mechanical activation of ExoS-ADP-ribosyltransferase activity and to reveal its cellular targets in the cell. Our observations suggested that Ras GTPase is the dominant target by which ExoS mediates cell death and activated Ras is able to protect cells against cell death, regardless of whether it has been ADP-ribosylated by ExoS. It has been reported that the 14-3-3 cofactor protein is required for ADP-ribosyltransferase activity of ExoS and a phosphorylation-independent interaction occurs between 14-3-3 and the C-terminal part of ExoS. We have undertaken a deeper analysis including structural and biological investigation of this interaction. Our results suggested that leucine-428 of ExoS is the most critical residue for ExoS enzymatic activity. Structural analysis showed that ExoS binds to 14-3-3 in a novel binding mode mostly relying on hydrophobic contacts. Our structure was supported by biochemical and cytotoxicity analyses, which revealed that the substitution of important residues of ExoS significantly weakens the ability of ExoS to modify endogenous targets such as RAS/RAP1 and to induce cell death. Further, mutation of key residues within the ExoS binding site for 14-3-3 impairs virulence in a mouse pneumonia model. Leucine residues-422, 423, 426, and 428 of ExoS are important for the interaction with the ″roof″ of the amphiphatic groove of 14-3-3. In conclusion, we show the mechanism of cell signal transduction pathways affected upon ExoS infection and also demonstrate that the hydrophobic residues of ExoS in 14-3-3 interaction motif have a significant role for ExoS enzymatic activity.
24

Metabolic Regulation of Caspase-2

Buchakjian, Marisa Rae January 2011 (has links)
<p>Apoptosis is a form of programmed cellular "suicide" which is activated in response to a variety of pro-death stimuli. Apoptotic cell death is orderly and energy-dependent, and cellular constituents are packaged into membrane-bound vesicles for consumption by phagocytes. Toxic intracellular signals are never exposed to neighboring cells or to the extracellular environment, and a host inflammatory response does not occur. Apoptosis is executed by the coordinated activation of caspase family proteins. Caspase-2 is an apical protease in this family, and promotes cell death after receipt of cues from intracellular stressor signals. Caspase-2 helps to initiate apoptosis by responding to cellular death stimuli and signaling for downstream cytochrome c release and executioner caspase activation.</p><p> Several years ago our lab determined that Xenopus laevis oocyte death is partly controlled by the activation of caspase-2. In the setting of oocyte or egg extract nutrient depletion, caspase-2 was observed to be activated upstream of mitochondrial cytochrome c. In fact, caspase-2 is suppressed in response to the nutrient status of the oocyte: nutrient-replete oocytes with healthy pentose phosphate pathway flux and abundant NADPH production are able to inhibit caspase-2 via S135 phosphorylation catalyzed by calcium/calmodulin-dependent protein kinase II. Phosphorylation of caspase-2 at S135 is critical in preventing oocyte cell death, and a caspase-2 mutant unable to be phosphorylated loses its ability to respond to suppressive NADPH signals. </p><p> In this dissertation we examine the converse mechanism of metabolically-regulated caspase-2 activation in the Xenopus egg extract. We now show that caspase-2 phosphorylated at S135 binds the interactor 14-3-3 zeta, thus preventing caspase-2 dephosphorylation. Moreover, we determined that S135 dephosphorylation is catalyzed by protein phosphatase-1, which directly binds caspase-2. Although caspase-2 dephosphorylation is responsive to metabolism, neither PP1 activity nor binding is metabolically regulated. Rather, release of 14-3-3 zeta from caspase-2 is the point of metabolic control and allows for caspase-2 dephosphorylation. Accordingly, a caspase-2 mutant unable to bind 14-3-3 zeta is highly susceptible to activation. Although this mechanism was initially established in Xenopus, we now demonstrate similar control of murine caspase-2 by phosphorylation and 14-3-3 binding in mouse eggs. </p><p> In the second part of this dissertation we examine the paradigm of caspase-2 metabolic regulation in a mammalian somatic cell context. We observed that mammalian caspase-2 is a metabolically-regulated phosphoprotein in somatic cells, and that the site of regulation is caspase-2 S164. Phosphorylation at S164 appears to inhibit mammalian caspase-2 by preventing its induced proximity oligomerization, thus also preventing procaspase-2 autocatalytic processing. We further identify some of the molecular machinery involved in S164 phosphorylation and demonstrate conservation with the validated Xenopus regulators. Interestingly, we extend the findings of caspase-2 phosphorylation to a study of ovarian cancer, and show that caspase-2 S164 phosphorylation might be involved in determining cancer cell chemosensitivity. We further provide evidence that chemosensitivity can be modulated by the cellular metabolic status in a caspase-2-dependent manner. Thus, we have identified a novel phosphorylation site on mammalian caspase-2 in somatic cells, and are working further to understand the implications of caspase-2 signaling in the context of cancer cell responsiveness to chemotherapeutic treatments.</p> / Dissertation
25

Tumor-derived proteins and mitochondrial dysfunction in lung cancer-induced cachexia

McLean, Julie B. 01 January 2015 (has links)
Lung tumors secrete multiple factors that contribute to cachexia, a severe wasting syndrome that includes loss of muscle mass, weakness, and fatigue. 80% of advanced lung cancer patients experience cachexia, which cannot be reversed by nutritional interventions, diminishes response to and tolerance of cancer treatments, and increases morbidity and mortality. Despite a multitude of clinical trials, there are currently no approved treatments. This deficiency suggests that not all of the factors that contribute to cachexia have been identified. Cancer is frequently accompanied by an increase in cyclooxygenase-2 (COX-2), a hallmark of inflammation. Clinical trials for COX-2 inhibitors have resulted in restoration of muscle mass and decreased fatigue. Along with loss of myofibrillar proteins, cachexia also induces mitochondrial dysfunction, which contributes to fatigue. The amelioration of fatigue by COX-2 inhibition suggests possible alterations to mitochondrial function. We hypothesized that there were unidentified tumor-derived factors that contribute to cachectic wasting and fatigue. Treatment of C2C12 myotubes with Lewis lung cancer-conditioned media (LCM) resulted in increased COX-2 content, myosin loss, and mitochondrial dysfunction. Mass spectrometry revealed 158 confirmed proteins in LCM. We focused on extracellular 14-3-3 proteins because they bind and regulate over 200 known partners. We found that depletion of extracellular 14-3-3 proteins diminished myosin content. CD13, an aminopeptidase, is the proposed receptor for 14-3-3 proteins. Inhibiting aminopeptidases with Bestatin also reduced myosin content. LCM treatment decreased basal and ATP-related mitochondrial respiration, caused a transient rise in reactive oxygen species (ROS), and increased 4-Hydroxynonenal (4-HNE) in both cytosolic and mitochondrial fractions of cell lysates. COX-2 inhibition did not spare myosin content in LCM-treated myotubes, but did alter mitochondrial respiration and cytosolic oxidant levels. Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines, signaling via aminopeptidases to help maintain muscle mass. We elucidated how LCM alters mitochondrial electron flow, and increases oxidative damage by ROS and 4-HNE. Although successful in clinical trials, COX-2 inhibitors do not appear to spare muscle mass by directly working on skeletal muscle, but did alter mitochondrial function.
26

Diagnostische Liquorparameter der sporadischen Creutzfeldt-Jakob-Erkrankung und häufiger Differentialdiagnosen / Diagnostic CSF-parameter in sporadic CJD and and common differential diagnoses

Kühmel, Torsten 14 May 2013 (has links)
No description available.
27

BAD-interacting proteins in breast cancer cells

Craik, Alison C Unknown Date
No description available.
28

Signalisation calcique et protéines 14-3-3 dans la mort cellulaire induite par les sphingolipides chez les végétaux / Calcium signaling and 14-3-3 proteins in sphingolipid-induced cell death in plants

Ormancey, Mélanie 30 September 2016 (has links)
Les sphingolipides et plus particulièrement les bases à longue chaîne (LCBs) jouent un rôle crucial dans l'induction de la mort cellulaire programmée. Chez les végétaux, la fumonisine B1 (FB1), une mycotoxine produite par le champignon nécrotrophe Fusarium moniliforme, perturbe la voie de biosynthèse des sphingolipides ce qui conduit à l'accumulation des deux LCBs majoritaires chez Arabidopsis thaliana, à savoir la phytosphingosine (PHS) et la dihydrosphingosine (DHS). Néanmoins, la voie de signalisation induite par la FB1 demeure largement inconnue à ce jour. En utilisant A. thaliana, l'équipe a récemment montré qu'en réponse aux LCBs ou à la FB1, les protéines 14-3-3 sont phosphorylées par la protéine kinase dépendante du calcium CPK3, à laquelle elles sont associées de manière constitutive. Cette phosphorylation conduit à la dissociation du complexe CPK3/14-3-3s et au clivage de la protéine kinase qui a été identifiée comme étant un régulateur majeur de cette voie de signalisation. L'objectif de mon travail de thèse s'est inscrit dans la continuité de ces travaux et a consisté, de manière générale, à une meilleure compréhension des processus impliquant la protéine kinase CPK3, notamment sa régulation par les 14-3-3s et son devenir après la dissociation du complexe en réponse aux LCBs. A travers mes travaux de thèse, j'ai pu montrer que CPK3 interagit préférentiellement avec les isoformes de 14-3-3s appartenant au groupe non-epsilon de manière phospho- et calcium-dépendante en condition contrôle. Suite à sa perte d'interaction avec les 14-3-3s, j'ai montré que le domaine variable N-terminal de CPK3 est clivé de manière LCB-dépendante. Ce clivage est à corréler avec l'activation, dépendante de la PHS et de la FB1, de la protéase à cystéine de type papaïne, RD21 (responsive-to-dessication 21). De manière intéressante, alors que la forme pleine longueur de CPK3 est principalement associée aux membranes en condition contrôle, la forme clivée de cette protéine kinase est retrouvée exclusivement au niveau de la fraction soluble. Une approche génétique associée à des analyses phénotypiques indique que RD21 agit en tant que régulateur négatif de la PCD induite par la FB1 chez A. thaliana. / The sphingolipids and more particularly the long chain bases (LCBs) play a crucial role in the induction of programmed cell death. In plants, the mycotoxin fumonisin B1 (FB1) produced by the necrotrophic fungus Fusarium moniliforme disrupts sphingolipid biosynthesis, leading to the accumulation of the two major LCBs in Arabidopsis thaliana, i.e. phytosphingosine (PHS) and dihydrosphingosine (DHS). However, the FB1-induced signaling pathway remains largely unknown. By using A. thaliana as a plant model, the team has recently shown that, upon LCB or FB1 treatment, 14-3-3 proteins are phosphorylated by the calcium-dependent protein kinase, CPK3, with which 14-3-3s are constitutively associated. This phosphorylation event leads to the dissociation of the CPK3/14-3-3 complex and to CPK3 cleavage, which was identified as a crucial regulator of this signaling pathway. In this context, the objectives of my thesis were to get a deep further in the knowledge of this signaling pathway involving the protein kinase CPK3, including its regulation by 14-3-3s and its becoming after complex dissociation in response to LCBs. Thus, I have shown that CPK3 preferentially binds to the non-epsilon 14-3-3 isoforms in a phospho- and calcium-dependent manner in control condition. After the CPK3/14-3-3 complex dissociation, I have demonstrated that the N-terminal variable domain of CPK3 is cleaved in a LCB-dependent manner. This cleavage can be correlated with the PHS/FB1-induced activation of the papain-like cysteine protease, RD21 (responsive-to-dessication 21). Interestingly, while full-length CPK3 is mainly associated to membranes in control condition, its FB1-induced cleaved form becomes soluble. A genetic approach associated to phenotype analyses indicates that RD21 acts as a negative regulator of FB1-induced cell death in A. thaliana.
29

Propojení signalizace PKN3 a p130Cas/BCAR1 / Crosstalk of PKN3 and p130Cas/BCAR1 signaling

Dibus, Michal January 2016 (has links)
Both p130Cas and PKN3 are important regulators of cellular signaling deregulation of which leads to malignant behavior of cancer cells. Recently we have found that SH3 domain of p130Cas mediates interaction with proline rich region of PKN3 suggesting their possible cooperation in regulation of these processes. In this work we have focused on the phosphorylation of p130Cas by PKN3 and identified serine 498 (S498) within the serine rich domain of p130Cas to be phosphorylated by PKN3 in vitro. Given that S498 is localized within the 14-3-3 binding motif and its phosphorylation is required for interaction of p130Cas with 14-3-3 proteins, we propose potential existence of novel PKN3/p130Cas/14-3-3 signaling axis. In the second part of the work we have studied this pathway in response to antiestrogen treatment in estrogen receptor positive breast cancer cell line MCF7. Although we have shown inactivation of PKN3 occurs as an early response to tamoxifen treatment, we do not rule out its possible role in further promotion of resistance to antiestrogens. Furthermore, understanding the signaling triggered by interaction of PKN3 with p130Cas and its possible downstream effects on promoting malignant growth of cancer cells would help in finding novel therapeutic targets.
30

Discovery of a Novel Regulatory Mechanism of TNK1 by 14-3-3 and Its Ubiquitin Association Domain Provides a Potential Therapeutic Targeting Opportunity in Cancer

Chan, Tsz Yin 03 August 2020 (has links)
While a relatively limited number of known oncogenes underlie a large percentage of cancers, a variety of new genes have emerged as low-frequency cancer drivers. Each of these new oncogenes represents a frontier for targeted therapy. However, the discovery of low-frequency targetable oncogenic drivers is challenging. This study focuses on the poorly understood Tyrosine kinase non-receptor-1 (TNK1), which has been reported to have both oncogenic and tumor suppressive functions. TNK1 has been identified to promote cancer cells survival and promote chemoresistance in multiple independent studies. On the other hand, whole-body constitutive deletion of TNK1 in mice caused an increase in spontaneous carcinomas and lymphomas. All in all, with no known regulatory mechanism and substrates of TNK1, the precise biological role of TNK1 is still unclear. To understand how TNK1 is regulated, we employed a proteomic approach to identify TNK1 interactors. We found out that TNK1 interacts with the phospho-binding protein 14-3-3 and this interaction is mediated by a cluster of MARK-mediated phosphorylations within the proline-rich domain. 14-3-3 binding retains TNK1 in the cytosol and maintains TNK1 in an inactive state. Release of TNK1 from 14-3-3 binding drives TNK1 to a heavy membrane fraction, where it becomes highly active. One unique feature of TNK1 is an ubiquitin association domain (UBA) on its C-terminus. Our data suggest that the UBA domain of TNK1 binds to poly-ubiquitin chains in nondiscriminatory manner. Remarkably, point mutations within the UBA that disrupt ubiquitin binding abolish TNK1 activation and oncogenic signaling, suggesting, to our knowledge, a unique UBA-centric mechanism of tyrosine kinase regulation. Finally, we used a structure-guided approach to identify a small molecule inhibiting TNK1 with high potency and selectivity. Such compound, TP-5801, inhibits TNK1 dependent STAT3 phosphorylation. TP-5801 also prolongs the survival of mice injected via tail vein with TNK1-driven Ba/F3 cells and reduces tumor burden in a subcutaneous xenograft model. In conclusion, our data reveal a mechanism of TNK1 regulation that controls its oncogenic tyrosine kinase activity and a potential strategy for TNK1 inhibition.

Page generated in 0.0503 seconds