31 |
Ab-initio electronic structure and quantum transport calculations on quasi-two-dimensional materials for beyond Si-CMOS devicesChang, Jiwon, active 2013 24 October 2013 (has links)
Atomically two-dimensional (2-D) graphene, as well as the hexagonal boron nitride dielectric have been and are continuing to be widely investigated for the next generation nanoelectronic devices. More recently, other 2-D materials and electronic systems including the surface states of topological insulators (TIs) and monolayers of transition metal dichalcogenides (TMDs) have also attracted considerable interest. In this work I have focused on these latter two material systems on possible device applications. TIs are characterized by an insulating bulk band gap and metallic Dirac surface states which are spin-polarized. Here, the electronic structures of bulk and thin film TIs are studied using ab-initio density functional theory (DFT). Band inversion, an essential characteristic of TIs, is shown in the bulk band structures. Properties of TI surface bands in thin film such as the critical film thickness to induce a gap, the thickness dependent gap size, and the localization length of surface states are reported. Effects of crystalline dielectric materials on TI surface states are also addressed by ab-initio calculations. I discuss the sensitivity of Dirac point degeneracy and linear band dispersion of TI with respect to different dielectric surface terminations as well as different relative atom positions of the dielectric and TI. Additionally, this work presents research on exciton condensation in TI using a tight-binding model combined with self-consistent non-local Hartree-Fock mean-field theory. Possibility of exciton condensation in the TI Bi₂Se₃ thin film is assessed. Non-equilibrium Green's function (NEGF) simulations with the atomistic tight-binding (TB) Hamiltonian are carried out to explore the performance of metal-oxide-semiconductor field-effect-transistor (MOSFET) and tunnel field-effect-transistor (TFET) based on the Bi₂Se₃ TI thin film. How the high dielectric constant of Bi₂Se₃ affects the performance of MOSFET and TFET is presented. Bulk TMDs such as MoS₂, WS₂ and others are the van der Waals-bonded layered material, much like graphite, except monolayer (and Bulk) TMDs have a large band gap in-contrast to graphene (and graphite). Here, the performance of nanoscale monolayer MoS₂ n-channel MOSFETs are examined through NEGF simulations using an atomistic TB Hamiltonian. N- and p-channel MOSFETs of various monolayer TMDs are also compared by the same approach. I correlate the performance differences with the band structure differences. Finally, ab-initio calculations of adatom doping effects on the monolayer MoS₂ is shown. I discuss the most stable atomic configurations, the bonding type and the amount of charge transfer from adatom to the monolayer MoS₂. / text
|
32 |
Sparseness-constrained data continuation with frames: Applications to missing traces and aliased signals in 2/3-DHennenfent, Gilles, Herrmann, Felix J. January 2005 (has links)
We present a robust iterative sparseness-constrained interpolation algorithm using 2/3D curvelet frames and Fourier-like transforms that exploits continuity along reflectors in seismic data. By choosing generic transforms, we circumvent the necessity to make parametric assumptions (e.g. through linear/parabolic Radon or demigration) regarding the shape of events in seismic data. Simulation and real data examples for data with moderately sized gaps demonstrate that our algorithm provides interpolated traces that accurately reproduce the wavelet shape as well as the AVO behavior. Our method also shows good results for de-aliasing judged by the behavior of the (f-k)-spectrum before and after regularization.
|
33 |
LINEAR AND NONLINEAR MODELING OF ASPERITY SCALE FRICTIONAL MELTING IN BRITTLE FAULT ZONESKanda, Ravi V. S. 01 January 2003 (has links)
Study of pseudotachylytes (PT) (frictional melts) can provide information on the physical and chemical conditions at the earthquake source. This study examines the influence of asperityscale fault dynamics on asperity temperature distribution, and therefore, the potential for frictional melting to occur. Frictional melting occurs adiabatically, and is initiated between opposing asperity tips during fault slip. Our model considers 2-D heat conduction in elastic, isotropic, hemispherical asperities, with temperature dependent thermal properties. The only heat source is a point heat flux pulse at the asperity tip. The non-linear problem was solved using the -form of Newton-Kantorovich procedure coupled with the -form of Douglas-Gunn two level finite difference scheme, while the linear problem required only the latter method. Results for quartz and feldspar indicate that peak temperatures can reach melting point values for typical asperity sizes (1-100 mm), provided that contact (frictional) shear stress is sufficiently high. For any asperity size, the temperature distribution peak becomes insignificant by the time it reaches the asperity center. These results imply that much of asperity scale melting is highly localized, which may explain why most PT veins in the field are usually very thin. However, in some cases, successive asperity encounters may generate temperature increases large enough to trigger the massive melting inferred from typical PT exposures. Significant differences were observed between the results of the linear and nonlinear models.
|
34 |
Automated recognition of handwritten mathematicsMacLean, Scott January 2014 (has links)
Most software programs that deal with mathematical objects require input expressions to be linearized using somewhat awkward and unfamiliar string-based syntax. It is natural to desire a method for inputting mathematics using the same two-dimensional syntax employed with pen and paper, and the increasing prevalence of pen- and touch-based interfaces causes this topic to be of practical as well as theoretical interest. Accurately recognizing two-dimensional mathematical notation is a difficult problem that requires not only theoretical advancement over the traditional theories of string-based languages, but also careful consideration of runtime efficiency, data organization, and other practical concerns that arise during system construction.
This thesis describes the math recognizer used in the MathBrush pen-math system. At a high level, the two-dimensional syntax of mathematical writing is formalized using a relational grammar. Rather than reporting a single recognition result, all recognizable interpretations of the input are
simultaneously represented in a data structure called a parse forest. Individual interpretations may be extracted from the forest and reported one by one as the user requests them. These parsing techniques necessitate robust tree scoring functions, which themselves rely on several lower-level recognition processes for stroke grouping, symbol recognition, and spatial relation classification.
The thesis covers the recognition, parsing, and scoring aspects of the MathBrush recognizer, as well as the algorithms and assumptions necessary to combine those systems and formalisms together into a useful and efficient software system. The effectiveness of the resulting system is measured through two accuracy evaluations. One evaluation uses a novel metric based on user effort, while the
other replicates the evaluation process of an international accuracy competition. The evaluations show that not only is the performance of the MathBrush recognizer improving over time, but it is also significantly more accurate than other academic recognition systems.
|
35 |
Design of an Analog VLSI CochleaShiraishi, Hisako January 2003 (has links)
The cochlea is an organ which extracts frequency information from the input sound wave. It also produces nerve signals, which are further analysed by the brain and ultimately lead to perception of the sound. An existing model of the cochlea by Fragni`ere is first analysed by simulation. This passive model is found to have the properties that the living cochlea does in terms of the frequency response. An analog VLSI circuit implementation of this cochlear model in CMOS weak inversion is proposed, using log-domain filters in current domain. It is fabricated on a chip and a measurement of a basilar membrane section is performed. The measurement shows a reasonable agreement to the model. However, the circuit is found to have a problem related to transistor mismatch, causing different behaviour in identical circuit blocks. An active cochlear model is proposed to overcome this problem. The model incorporates the effect of the outer hair cells in the living cochlea, which controls the quality factor of the basilar membrane filters. The outer hair cells are incorporated as an extra voltage source in series with the basilar membrane resonator. Its value saturates as the input signal becomes larger, making the behaviour rather closer to that of a passive model. The simulation results show this nonlinear phenomenon, which is also seen in the living cochlea. The contribution of this thesis is summarised as follows: a) the first CMOS weak inversion current domain basilar membrane resonator is designed and fabricated, and b) the first active two-dimensional cochlear model for analog VLSI implementation is developed.
|
36 |
Parallel JPEG Processing with a Hardware Accelerated DSP Processor / Parallell JPEG-behandling med en hårdvaruaccelerarad DSP processorAndersson, Mikael, Karlström, Per January 2004 (has links)
This thesis describes the design of fast JPEG processing accelerators for a DSP processor. Certain computation tasks are moved from the DSP processor to hardware accelerators. The accelerators are slave co processing machines and are controlled via a new instruction set. The clock cycle and power consumption is reduced by utilizing the custom built hardware. The hardware can perform the tasks in fewer clock cycles and several tasks can run in parallel. This will reduce the total number of clock cycles needed. First a decoder and an encoder were implemented in DSP assembler. The cycle consumption of the parts was measured and from this the hardware/software partitioning was done. Behavioral models of the accelerators were then written in C++ and the assembly code was modified to work with the new hardware. Finally, the accelerators were implemented using Verilog. Extension of the accelerator instructions was given following a custom design flow.
|
37 |
Synthesis and 2-D NMR Analysis of a New Phenyl-Substituted Polycyclic CompoundTsay, Fuh-Rong 05 1900 (has links)
Diels-Alder [4+2] cycloaddition of a mixture of 1- and 2 methylcyclopentadiene to 2-phenyl-g.-benzoquinone affords a mixture of four nd cycloadducts. A single, isomerically pure cycloadduct was isolated by careful column chromatography. Stereospecific reduction of this material with sodium borohydride and cerium(III) chloride 'affords a single, isomerically pure tricyclic diol. The structures of the cycloadduct and this tricyclic diol, established via analysis of their one- and two-dimensionial NMR spectra, were shown to be (1-methyl-5-phenyltricyclo[6.2.1.02,7]undec a-4,9 diene-3,6-dione and 1-methyl-5-phenyltricyclo[6.2.1.0 2 ,7 ]undeca-4,9-diene t.&A-3-=.a-6-diol), respectively. Intramolecular [2+2] photocyclization of this tricyclic diol afforded the corresponding cage diol, 3-methyl-7phenylpentacyclo[5.4.0.0 2 ,6 .03 , 1 0 .05, 9 ]undecane-.exogxa-8,11-diol. Oxidation of this cage diol with pyridinium chlorochromate in dry dichloromethane afforded a single, isomerically pure cage hydroxyketone, 3-methyl-7 phenylpentacyclo[5.4.02,6.03,l .1519]undecane-xA-8-ol-II-one, whose structure was established by single crystal X-ray crystallographic methods.
|
38 |
The Study of Sonar for Imaging of the Solid-Liquid Interface Inside Large TanksSood, Nitin 04 August 2005 (has links)
Retrieval, treatment, and disposal of high-level radioactive waste (HLW) is expected to cost between 100 and 300 billion dollars. The risk to workers, public health, and the environment are also a major area of concern for HLW. Visualization of the interface between settled solids and the optically opaque liquid is needed for retrieval of the waste from underground storage tanks. A Profiling sonar selected for this research generates 2-D image of the interface. Multiple experiments were performed to demonstrate the effectiveness of sonar in real-time monitoring the interface inside HLW tanks. First set of experiments demonstrated that objects shapes could be identified even when 30% of solids entrained in liquid, thereby mapping the interface. Simulation of sonar system validated these results. Second set of experiments confirmed the sonar’s ability in detecting the solids with density similar to the immersed liquid. Third set of experiments determined the affects of near by objects on image resolution. Final set of experiments proved the functional and chemical capabilities of sonar in caustic solution.
|
39 |
Free Convection In Horizontal Cavity Heated From Top Containing Air And A Condensing VaporChakraborty, Prodyut Ranjan 01 1900 (has links) (PDF)
No description available.
|
40 |
Kephalometrische und photogrammetrische Analysen von Weichteilveränderungen des Gesichtsprofils nach orthognathen chirurgischen Eingriffen / Cephalometric and photogrammetric analysis of soft tissue facial profile changes after orthognathic surgeryTroue, Alice Katharina 30 July 2013 (has links)
No description available.
|
Page generated in 0.015 seconds