Spelling suggestions: "subject:"handwritten recognition""
1 |
Pen-Chant : Acoustic Emissions of Handwriting and DrawingSeniuk, Andrew G. 27 September 2009 (has links)
The sounds generated by a writing instrument ("pen-chant") provide a rich and under-utilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of 8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable - on their own or in conjunction with image-based features - to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches. / Thesis (Master, Computing) -- Queen's University, 2009-09-27 08:56:53.895
|
2 |
Dynamic character recognition using Hidden Markov ModelsRyan, Matthew Stephen January 1997 (has links)
No description available.
|
3 |
Techniques for creating ground-truthed sketch corporaMacLean, Scott January 2009 (has links)
The problem of recognizing handwritten mathematics notation has been studied for over forty years with little practical success. The poor performance of math recognition systems is due, at least in part, to a lack of realistic data for use in
training recognition systems and evaluating their accuracy. In fields for which such data is available, such as face and voice recognition, the data, along with objectively-evaluated recognition contests, has contributed to the rapid advancement of the state of the art.
This thesis proposes a method for constructing data corpora not only for hand-
written math recognition, but for sketch recognition in general. The method consists of automatically generating template expressions, transcribing these expressions by hand, and automatically labelling them with ground-truth. This approach is motivated by practical considerations and is shown to be more extensible and objective than other potential methods.
We introduce a grammar-based approach for the template generation task. In this approach, random derivations in a context-free grammar are controlled so as to generate math expressions for transcription. The generation process may be controlled in terms of expression size and distribution over mathematical semantics.
Finally, we present a novel ground-truthing method based on matching terminal symbols in grammar derivations to recognized symbols. The matching is produced by a best-first search through symbol recognition results. Experiments show that this method is highly accurate but rejects many of its inputs.
|
4 |
Techniques for creating ground-truthed sketch corporaMacLean, Scott January 2009 (has links)
The problem of recognizing handwritten mathematics notation has been studied for over forty years with little practical success. The poor performance of math recognition systems is due, at least in part, to a lack of realistic data for use in
training recognition systems and evaluating their accuracy. In fields for which such data is available, such as face and voice recognition, the data, along with objectively-evaluated recognition contests, has contributed to the rapid advancement of the state of the art.
This thesis proposes a method for constructing data corpora not only for hand-
written math recognition, but for sketch recognition in general. The method consists of automatically generating template expressions, transcribing these expressions by hand, and automatically labelling them with ground-truth. This approach is motivated by practical considerations and is shown to be more extensible and objective than other potential methods.
We introduce a grammar-based approach for the template generation task. In this approach, random derivations in a context-free grammar are controlled so as to generate math expressions for transcription. The generation process may be controlled in terms of expression size and distribution over mathematical semantics.
Finally, we present a novel ground-truthing method based on matching terminal symbols in grammar derivations to recognized symbols. The matching is produced by a best-first search through symbol recognition results. Experiments show that this method is highly accurate but rejects many of its inputs.
|
5 |
Neural Network Based Off-line Handwritten Text Recognition SystemHan, Changan 01 April 2011 (has links)
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero.
Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: 1) error rate on testing set, 2) processing time needed to recognize a segmented character and 3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition.
Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases.
The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
|
6 |
Freeform Cursive Handwriting Recognition Using a Clustered Neural NetworkBristow, Kelly H. 08 1900 (has links)
Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature characterizations, and 3) the use of overlapping bigrams as the textual working unit to assist in context analysis and reconstruction.
|
7 |
Intelligent Indexing: A Semi-Automated, Trainable System for Field LabelingClawson, Robert T 01 September 2014 (has links)
We present Intelligent Indexing: a general, scalable, collaborative approach to indexing and transcription of non-machine-readable documents that exploits visual consensus and group labeling while harnessing human recognition and domain expertise. In our system, indexers work directly on the page, and with minimal context switching can navigate the page, enter labels, and interact with the recognition engine. Interaction with the recognition engine occurs through preview windows that allow the indexer to quickly verify and correct recommendations. This interaction is far superior to conventional, tedious, inefficient post-correction and editing. Intelligent Indexing is a trainable system that improves over time and can provide benefit even without prior knowledge. A user study was performed to compare Intelligent Indexing to a basic, manual indexing system. Volunteers report that using Intelligent Indexing is less mentally fatiguing and more enjoyable than the manual indexing system. Their results also show that it reduces significantly (30.2%) the time required to index census records, while maintaining comparable accuracy. A helpful video resource for learning more about this research is available on youtube through this link: https://www.youtube.com/watch?v=gqdVzEPnBEw
|
8 |
Warping-Based Approach to Offline Handwriting RecognitionKennard, Douglas J. 03 April 2013 (has links)
An enormous amount of the historical record is currently trapped in non-indexed handwritten format. Even after being scanned into images, only a minute fraction of the existing records can be manually transcribed / indexed with reasonable amounts of time and cost. Although progress continues to be made with automatic handwriting recognition (HR), it is not yet good enough to replace manual transcription or indexing. Much of the recent HR work has focused on incremental improvements to methods based on Hidden Markov Models (HMMs) and other similar probabilistic approaches. In this dissertation we present a fundamentally new approach to HR based on 2-D geometric warping of word images. The results of our experimentation indicate that our approach is significantly more accurate than an existing whole-word approach used for word-spotting, and may also be better than HMM-based HR approaches. Since it is a completely new method, we also believe there is potential for improvement and future work that builds on this approach. In addition, we demonstrate that the approach can be used effectively in the related application domain of signature verification and forgery detection.
|
9 |
Aiding Human Discovery of Out-of-the-Moment Handwriting Recognition ErrorsStedman, Ryan January 2009 (has links)
Handwriting recognizers frequently misinterpret digital ink input, requiring human verification of recognizer output to identify and correct errors, before the output of the recognizer can be used with any confidence int its correctness. Technologies like Anoto pens can make this error discovery and correction task more difficult, because verification of recognizer output may occur many hours after data input, creating an ``out-of-the-moment'' verification scenario. This difficulty can increase the number of recognition errors missed by users in verification. To increase the accuracy of human verified recognizer output, methods of aiding users in the discovery of handwriting recognition errors need to be created. While this need has been recognized by the research community, no published work exists examining this problem.
This thesis explores the problem of creating error discovery aids for handwriting recognition. Design possibilities for the creation of error discovery aids are explored, and concrete designs for error discovery aids are presented. Evaluations are performed on a set of these proposed discovery aids, showing that the visual proximity aid improves user performance in error discovery. Following the evaluation of the discovery aids proposed in this thesis, the one discovery aid that has been proposed in the literature, confidence highlighting, is explored in detail and its potential as a discovery aid is highlighted. A technique is then presented, complimentary to error discovery aids, to allow a system to monitor and respond to user performance in errors discovery. Finally, a set of implications are derived from the presented work for the design of verification interfaces for handwriting recognition.
|
10 |
Aiding Human Discovery of Out-of-the-Moment Handwriting Recognition ErrorsStedman, Ryan January 2009 (has links)
Handwriting recognizers frequently misinterpret digital ink input, requiring human verification of recognizer output to identify and correct errors, before the output of the recognizer can be used with any confidence int its correctness. Technologies like Anoto pens can make this error discovery and correction task more difficult, because verification of recognizer output may occur many hours after data input, creating an ``out-of-the-moment'' verification scenario. This difficulty can increase the number of recognition errors missed by users in verification. To increase the accuracy of human verified recognizer output, methods of aiding users in the discovery of handwriting recognition errors need to be created. While this need has been recognized by the research community, no published work exists examining this problem.
This thesis explores the problem of creating error discovery aids for handwriting recognition. Design possibilities for the creation of error discovery aids are explored, and concrete designs for error discovery aids are presented. Evaluations are performed on a set of these proposed discovery aids, showing that the visual proximity aid improves user performance in error discovery. Following the evaluation of the discovery aids proposed in this thesis, the one discovery aid that has been proposed in the literature, confidence highlighting, is explored in detail and its potential as a discovery aid is highlighted. A technique is then presented, complimentary to error discovery aids, to allow a system to monitor and respond to user performance in errors discovery. Finally, a set of implications are derived from the presented work for the design of verification interfaces for handwriting recognition.
|
Page generated in 0.279 seconds