• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 14
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations of semiconductor laser using non-equilibrium Green's functions method

Miloswzewski, Jacek January 2012 (has links)
A novel method of simulating edge-emitting semiconductor lasers in a non-equilibrium steady-state is developed. The simulation is based on a non-equilibrium Green's function (NEGF) method. The Dyson equation (central equation of this method) is derived and written in a basis suitable for numerical implementation. The electron-photon self-energy is derived form scratch for the case of the edge-emitting laser. Other interactions present in the simulation are phenomenological scattering and scattering due to longitudinal optical phonons. This microscopic approach significantly reduce the number of phenomenological parameters needed to simulate laser. As an example, the theory is applied to analyze quantum well laser with the effective mass Hamiltonian. The major laser characteristics such as modal gain, threshold gain, carrier and current densities are determined.
2

Simulations of semiconductor laser using non-equilibrium Green's functions method

Miloswzewski, Jacek January 2012 (has links)
A novel method of simulating edge-emitting semiconductor lasers in a non-equilibrium steady-state is developed. The simulation is based on a non-equilibrium Green's function (NEGF) method. The Dyson equation (central equation of this method) is derived and written in a basis suitable for numerical implementation. The electron-photon self-energy is derived form scratch for the case of the edge-emitting laser. Other interactions present in the simulation are phenomenological scattering and scattering due to longitudinal optical phonons. This microscopic approach significantly reduce the number of phenomenological parameters needed to simulate laser. As an example, the theory is applied to analyze quantum well laser with the effective mass Hamiltonian. The major laser characteristics such as modal gain, threshold gain, carrier and current densities are determined.
3

Transport Phenomena in Nanowires, Nanotubes, and Other Low-Dimensional Systems

Montes Muñoz, Enrique 01 1900 (has links)
Nanoscale materials are not new in either nature or physics. However, the recent technological improvements have given scientists new tools to understand and quantify phenomena that occur naturally due to quantum confinement effects. In general, these phenomena induce remarkable optical, magnetic, and electronic properties in nanoscale materials in contrast to their bulk counterpart. In addition, scientists have recently developed the necessary tools to control and exploit these properties in electronic devices, in particular field effect transistors, magnetic memories, and gas sensors. In the present thesis we implement theoretical and computational tools for analyzing the ground state and electronic transport properties of nanoscale materials and their performance in electronic devices. The ground state properties are studied within density functional theory using the SIESTA code, whereas the transport properties are investigated using the non-equilibrium Green's functions formalism implemented in the SMEAGOL code. First we study Si-based systems, as Si nanowires are believed to be important building blocks of the next generation of electronic devices. We derive the electron transport properties of Si nanowires connected to Au electrodes and their dependence on the nanowire growth direction, diameter, and length. At equilibrium Au-nanowire distance we find strong electronic coupling between electrodes and nanowire, resulting in low contact resistance. For the tunneling regime, the decay of the conductance with the nanowire length is rationalized using the complex band structure. The nanowires grown along the (110) direction show the smallest decay and the largest conductance and current. Due to the high spin coherence in Si, Si nanowires represent an interesting platform for spin devices. Therefore, we built a magnetic tunneling junction by connecting a (110) Si nanowire to ferromagnetic Fe electrodes. We have find a substantial low bias magnetoresistance of ~ 200%, which halves for an applied voltage of about 0.35 V and persist up to 1 V. In order to account for shallow impurities coming from bulk Si, the nanowire is doped with either P or B atoms (n or p type). Doping in general decreases the magnetoresistance as soon as the conductance is no longer dominated by tunneling. On the other hand, we study the electron transport properties of Si nanotubes connected to Au electrodes. The general properties turn out to be largely independent of the nanotube chirality, diameter, and length. However, the tunneling conductance of Si nanotubes is found to be significantly larger than in Si nanowires, while having a comparable band gap. For this reason we simulate a Si nanotube field effect transistor by applying an uniform potential gate. Our results demonstrate very high values of the transconductance, outperforming the best commercial Si field effect transistors, combined with low values of the subthreshold swing. Phosphorene (monolayer black P) is the only elemental two-dimensional material besides graphene that can be mechanically exfoliated and also can support electronics. Specific dislocations of the atoms in the phosphorene lattice generate another stable two-dimensional allotrope with buckled honeycomb lattice, blue P. We demonstrate structural stability of monolayer zigzag and armchair blue P nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning. We study the adsorption of CO, CO2, NH3, NO, and NO2 molecules on blue P nanotubes. They are found to surpass the gas sensing performance of other nanoscale materials. Investigations of the gas adsorption and induced charge transfer indicate that blue P nanotubes are highly sensitive to N-based molecules, in particular NO2, due to covalent bonding. The current-voltage characteristics of nanotubes connected to Au electrodes is used to evaluate the change in resistivity upon adsorption. The observed selectivity and sensitivity properties make blue P nanotubes superior gas sensors for a wide range of applications. Using black P and blue P nanoribbons, we configure field effect transistors with atomically perfect junctions by using armchair nanoribbons as semiconducting channel and zigzag nanoribbons as metallic leads. We characterize the devices and observe a performance superior to Si-based devices, with on/off ratio of ~ 103, low subthreshold swing of ~ 60 mV/decade, and high transconductance of ~ 104 S/m.
4

Quantum Transport Simulations of Nanoscale Materials

Obodo, Tobechukwu Joshua 07 January 2016 (has links)
Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green's Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of two dipyrimidinyl-diphenyl molecules improves the rectification ratio, and tuning the asymmetry of the tandem set-up by rearranging the molecular blocks greatly enhances it. It has been recently demonstrated that the large band gap of boronitrene can be significantly reduced by carbon functionalization. We show that specific defect configurations can result in metallicity, raising interest in the material for electronic applications. In particular, we demonstrate negative differential conductance with high peak-to-valley ratios, depending on the details of the material, and identify the finite bias effects that are responsible for this behavior. Also, we studied the spin polarized transport through Mn-decorated topological line defects in graphene. Strong preferential bonding is found, which overcomes the high mobility of transition metal atoms on graphene and results in stable structures. Despite a large distance between the magnetic centers, we find a high magnetoresistance and attribute this unexpected property to very strong induced π magnetism. Finally, the results obtained herein advance the field of quantum electronic transport and provide significant insight on switches, rectification, negative differential conductance, magnetoresistance, and current-induced forces of novel nanoscale materials.
5

Zeitaufgelöster Elektronentransport in Quantendotsystemen

Croy, Alexander 29 July 2010 (has links) (PDF)
Der Elektronentransport durch Nanostrukturen bietet eine Perspektive auf interessante Anwendungen und neue Einsichten in die Nichtgleichgewichtsdynamik von Elektronen in komplexen Umgebungen. Quantendotsysteme erlauben im Speziellen ein hohes Maß an Kontrolle ihrer Eigenschaften und ermöglichen damit detaillierte Untersuchungen. Das wachsende Interesse an zeitaufgelöstem Elektronentransport in diesen Systemen erklärt sich vor allem durch die rasanten Fortschritte bei der experimentellen Realisierung von pulsinduziertem Transport. Zur Beschreibung und Interpretation dieser Experimente bedarf es der Entwicklung neuer theoretischer Zugänge und Berechnungsverfahren. In dieser Arbeit werden zwei Propagationsmethoden zur numerischen Beschreibung von zeitaufgelöstem Elektronentransport entwickelt. Hierbei wird einerseits von einer Einteilchenbeschreibung mit Nichtgleichgewichts-Green-Funktionen (NEGF) und andererseits von einer Vielteilchenbeschreibung, basierend auf verallgemeinerten Quantenmastergleichungen für die reduzierte Vielteilchendichtematrix, ausgegangen. Das Konzept ist in beiden Fällen ähnlich: Im ersten Schritt der Herleitung werden Hilfsgrößen eingeführt und gleichberechtigt zum reduzierten Zustand des Systems behandelt. Eine Hilfsmodenentwicklung der Fermi-Funktion ermöglicht im zweiten Schritt die numerische Berechnung mit den hergeleiteten Bewegungsgleichungen. Mit Hilfe einer Partialbruchzerlegung wird eine Entwicklung der Fermi-Funktion abgeleitet, die sich durch eine wesentlich verbesserte Konvergenz gegenüber bisher bekannten Entwicklungen auszeichnet. Diese Zerlegung erweist sich für die Propagation als effizienter Zugang und kann darüber hinaus bei Berechnungen zur Elektronenstruktur angewendet werden. Obwohl der NEGF-Formalismus eines der Standardverfahren für die Behandlung von Transportdynamik in Nanostrukturen darstellt, ist die Auswahl an numerischen Implementierungen verschwindend gering. Die in dieser Arbeit entwickelte Propagationsmethode stellt eine neue Herangehensweise dar, die im Vergleich zu den bisherigen Zugängen ein günstigeres Skalierungsverhalten aufweist. Anhand von zwei Beispielen wird demonstriert, dass die Methode sowohl auf stochastisch getriebene Systeme als auch auf Situationen mit realistischen Spannungspulsen anwendbar ist. Eine Erweiterung auf wechselwirkende Elektronen wird ausgehend von der Methode der Bewegungsgleichungen abgeleitet. Im Rahmen der Vielteilchenbeschreibung durch die verallgemeinerten Quantenmastergleichungen wird insbesondere der Einfluss von Termen höherer Ordnung untersucht. Hierzu wird, neben der üblichen Quantenmastergleichung zweiter Ordnung, explizit die vierte Ordnung berechnet. Ein Vergleich mit dem NEGF-Formalismus zeigt die Notwendigkeit höhere Ordnungen, zumindest partiell, zu berücksichtigen, da erst hierdurch die Verbreiterung der Energieniveaus aufgrund der Tunnelkopplung an die Reservoirs konsistent beschrieben wird. Dieser Befund wird am Beispiel des stationären und transienten Elektronentransports durch einen Doppelquantendot untermauert. Auf der Basis von numerischen Berechnungen und einem analytisch lösbaren Modell werden die Resultate eines aktuellen Pump-Probe-Experiments zur kohärenten Kontrolle von Ladungs-Qubits in Doppelquantendots interpretiert. Die Anwendungsmöglichkeiten der entwickelten Propagationsmethoden gehen weit über die in der Arbeit betrachteten Beispiele hinaus. Sie erlauben die Beschreibung von neuartigen Transportkonzepten und ermöglichen einen erweiterten Einblick in die Nichtgleichgewichtsdynamik von Elektronen in Nanostrukturen.
6

Development of TCAD modeling for low field electronics transport and strain engineering in advanced Fully Depleted Silicon On Insulator (FDSOI) CMOS transistors / Développement de la modélisation TCAD pour l'ingénierie de la contrainte dans les dispositifs CMOS avancés sur film minces

Nier, Olivier 18 December 2015 (has links)
La conception des dispositifs nanométriques CMOS apporte de nouveaux défis à la communauté TCAD. En effet, de nos jours, les améliorations des performances des transistors ne sont plus simplement dû à une simple diminution des dimensions des dispositifs, mais aussi à l'introduction de boosters de technologies tels que des nouvelles architectures (FDSOI, trigate), des oxydes de grille à forte permittivité, l'ingénierie de la contrainte ou de nouveaux matériaux de canal (Ge, III-V). Pour faire face à tous ces nouveaux défis technologiques, la modélisation TCAD (Technology Computer Aided Design) est un outil puissant pour guider le développement mais aussi pour réduire les coûts. Dans ce contexte, ce travail de thèse vise à améliorer la modélisation TCAD pour les technologies 28/14 et 10FDSOI, avec une attention particulière sur les impacts des contraintes mécaniques sur leurs performances. Dans un premier temps, les différents mécanismes impactant la mobilité des technologies FDSOI ont été étudiés en détail. Les modèles implémentés dans des outils de simulations avancés (NEGF, Multi subbands Monte Carlo, Kubo-Greenwood) sont étudiés, comparés et des développements du logiciel interne à STMicroelectronics (UTOXPP) sont proposés. Dans un second temps, une approche « top down » a été mis en place. Elle consiste à calibrer les modèles TCAD empiriques non pas sur des mesures mais sur des outils de simulations avancés (Kubo-Greenwood). Les modèles TCAD calibrés montrent de très bons accords avec les mesures de mobilité (split-CV) en variant la température, la polarisation du substrat et l’épaisseur de l’IL (Interfacial layer). Dans un troisième temps, les méthodes utilisées lors de cette thèse pour modéliser les contraintes induites par le procédé de fabrications sont décrites. Enfin, la dernière partie concerne la modélisation TCAD des technologies 28 et 14FDSOI. Des simulations mécaniques sont effectuées pour modéliser les profils de contraintes dans les transistors. Des solutions pour optimiser la configuration des contraintes dans le canal pour ces technologies sont proposées. / The design of nanoscale CMOS devices brings new challenges to TCAD community. Indeed, nowadays, CMOS performances improvements are not simply due to device scaling but also to the introduction of new technology “boosters” such as new transistors architectures (FDSOI, trigate), high-k dielectric gate stacks, stress engineering or new channel material (Ge, III-V). To face all these new technological challenges, Technology Computer Aided Design (TCAD) is a powerful tool to guide the development of advanced technologies but also to reduce development time and cost. In this context, this PhD work aimed at improving the modeling for 28/14 and 10FDSOI technologies, with a particular attention on mechanical strain impacts. In the first section, a summary of the main models implemented in state of the art device simulators is performed. The limitations and assumptions of these models are highlighted and developments of the in-house STMicroelectronics KG solvers are discussed. In the second section, a “top down” approach has been set-up. It has consisted in using advanced physical-based solvers as a reference for TCAD empirical models calibration. Calibrated TCAD reproduced accurately split-CV mobility measurements varying the temperature, the back bias and the Interfacial Layer (IL) thickness. The third section deals with a description of the methodologies used during this thesis to model stress induced by the process flow. Simulations are compared to nanobeam diffraction (NBD) strain measurements. The use and calibration of available TCAD models to efficiently model the impact of stress on mobility in a large range of stress (up to 2GPa) is also discussed in this section. The last part deals with TCAD modeling of advanced CMOS devices for 28/14 and 10FDSOI technology development. Mechanical simulations are performed to model the stress profile in transistors and several solutions to optimize the stress configuration in sSOI and SiGe-based devices have been presented.
7

Zeitaufgelöster Elektronentransport in Quantendotsystemen

Croy, Alexander 30 June 2010 (has links)
Der Elektronentransport durch Nanostrukturen bietet eine Perspektive auf interessante Anwendungen und neue Einsichten in die Nichtgleichgewichtsdynamik von Elektronen in komplexen Umgebungen. Quantendotsysteme erlauben im Speziellen ein hohes Maß an Kontrolle ihrer Eigenschaften und ermöglichen damit detaillierte Untersuchungen. Das wachsende Interesse an zeitaufgelöstem Elektronentransport in diesen Systemen erklärt sich vor allem durch die rasanten Fortschritte bei der experimentellen Realisierung von pulsinduziertem Transport. Zur Beschreibung und Interpretation dieser Experimente bedarf es der Entwicklung neuer theoretischer Zugänge und Berechnungsverfahren. In dieser Arbeit werden zwei Propagationsmethoden zur numerischen Beschreibung von zeitaufgelöstem Elektronentransport entwickelt. Hierbei wird einerseits von einer Einteilchenbeschreibung mit Nichtgleichgewichts-Green-Funktionen (NEGF) und andererseits von einer Vielteilchenbeschreibung, basierend auf verallgemeinerten Quantenmastergleichungen für die reduzierte Vielteilchendichtematrix, ausgegangen. Das Konzept ist in beiden Fällen ähnlich: Im ersten Schritt der Herleitung werden Hilfsgrößen eingeführt und gleichberechtigt zum reduzierten Zustand des Systems behandelt. Eine Hilfsmodenentwicklung der Fermi-Funktion ermöglicht im zweiten Schritt die numerische Berechnung mit den hergeleiteten Bewegungsgleichungen. Mit Hilfe einer Partialbruchzerlegung wird eine Entwicklung der Fermi-Funktion abgeleitet, die sich durch eine wesentlich verbesserte Konvergenz gegenüber bisher bekannten Entwicklungen auszeichnet. Diese Zerlegung erweist sich für die Propagation als effizienter Zugang und kann darüber hinaus bei Berechnungen zur Elektronenstruktur angewendet werden. Obwohl der NEGF-Formalismus eines der Standardverfahren für die Behandlung von Transportdynamik in Nanostrukturen darstellt, ist die Auswahl an numerischen Implementierungen verschwindend gering. Die in dieser Arbeit entwickelte Propagationsmethode stellt eine neue Herangehensweise dar, die im Vergleich zu den bisherigen Zugängen ein günstigeres Skalierungsverhalten aufweist. Anhand von zwei Beispielen wird demonstriert, dass die Methode sowohl auf stochastisch getriebene Systeme als auch auf Situationen mit realistischen Spannungspulsen anwendbar ist. Eine Erweiterung auf wechselwirkende Elektronen wird ausgehend von der Methode der Bewegungsgleichungen abgeleitet. Im Rahmen der Vielteilchenbeschreibung durch die verallgemeinerten Quantenmastergleichungen wird insbesondere der Einfluss von Termen höherer Ordnung untersucht. Hierzu wird, neben der üblichen Quantenmastergleichung zweiter Ordnung, explizit die vierte Ordnung berechnet. Ein Vergleich mit dem NEGF-Formalismus zeigt die Notwendigkeit höhere Ordnungen, zumindest partiell, zu berücksichtigen, da erst hierdurch die Verbreiterung der Energieniveaus aufgrund der Tunnelkopplung an die Reservoirs konsistent beschrieben wird. Dieser Befund wird am Beispiel des stationären und transienten Elektronentransports durch einen Doppelquantendot untermauert. Auf der Basis von numerischen Berechnungen und einem analytisch lösbaren Modell werden die Resultate eines aktuellen Pump-Probe-Experiments zur kohärenten Kontrolle von Ladungs-Qubits in Doppelquantendots interpretiert. Die Anwendungsmöglichkeiten der entwickelten Propagationsmethoden gehen weit über die in der Arbeit betrachteten Beispiele hinaus. Sie erlauben die Beschreibung von neuartigen Transportkonzepten und ermöglichen einen erweiterten Einblick in die Nichtgleichgewichtsdynamik von Elektronen in Nanostrukturen.
8

Quantum Mechanical and Atomic Level ab initio Calculation of Electron Transport through Ultrathin Gate Dielectrics of Metal-Oxide-Semiconductor Field Effect Transistors

Nadimi, Ebrahim 30 April 2008 (has links) (PDF)
The low dimensions of the state-of-the-art nanoscale transistors exhibit increasing quantum mechanical effects, which are no longer negligible. Gate tunneling current is one of such effects, that is responsible for high power consumption and high working temperature in microprocessors. This in turn put limits on further down scaling of devices. Therefore modeling and calculation of tunneling current is of a great interest. This work provides a review of existing models for the calculation of the gate tunneling current in MOSFETs. The quantum mechanical effects are studied with a model, based on a self-consistent solution of the Schrödinger and Poisson equations within the effective mass approximation. The calculation of the tunneling current is focused on models based on the calculation of carrier’s lifetime on quasi-bound states (QBSs). A new method for the determination of carrier’s lifetime is suggested and then the tunneling current is calculated for different samples and compared to measurements. The model is also applied to the extraction of the “tunneling effective mass” of electrons in ultrathin oxynitride gate dielectrics. Ultrathin gate dielectrics (tox<2 nm) consist of only few atomic layers. Therefore, atomic scale deformations at interfaces and within the dielectric could have great influences on the performance of the dielectric layer and consequently on the tunneling current. On the other hand the specific material parameters would be changed due to atomic level deformations at interfaces. A combination of DFT and NEGF formalisms has been applied to the tunneling problem in the second part of this work. Such atomic level ab initio models take atomic level distortions automatically into account. An atomic scale model interface for the Si/SiO2 interface has been constructed and the tunneling currents through Si/SiO2/Si stack structures are calculated. The influence of single and double oxygen vacancies on the tunneling current is investigated. Atomic level distortions caused by a tensile or compression strains on SiO2 layer as well as their influence on the tunneling current are also investigated. / Die vorliegende Arbeit beschäftigt sich mit der Berechnung von Tunnelströmen in MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors). Zu diesem Zweck wurde ein quantenmechanisches Modell, das auf der selbstkonsistenten Lösung der Schrödinger- und Poisson-Gleichungen basiert, entwickelt. Die Gleichungen sind im Rahmen der EMA gelöst worden. Die Lösung der Schrödinger-Gleichung unter offenen Randbedingungen führt zur Berechnung von Ladungsverteilung und Lebensdauer der Ladungsträger in den QBSs. Der Tunnelstrom wurde dann aus diesen Informationen ermittelt. Der Tunnelstrom wurde in verschiedenen Proben mit unterschiedlichen Oxynitrid Gatedielektrika berechnet und mit gemessenen Daten verglichen. Der Vergleich zeigte, dass die effektive Masse sich sowohl mit der Schichtdicke als auch mit dem Stickstoffgehalt ändert. Im zweiten Teil der vorliegenden Arbeit wurde ein atomistisches Modell zur Berechnung des Tunnelstroms verwendet, welche auf der DFT und NEGF basiert. Zuerst wurde ein atomistisches Modell für ein Si/SiO2-Schichtsystem konstruiert. Dann wurde der Tunnelstrom für verschiedene Si/SiO2/Si-Schichtsysteme berechnet. Das Modell ermöglicht die Untersuchung atom-skaliger Verzerrungen und ihren Einfluss auf den Tunnelstrom. Außerdem wurde der Einfluss einer einzelnen und zwei unterschiedlich positionierter neutraler Sauerstoffleerstellen auf den Tunnelstrom berechnet. Zug- und Druckspannungen auf SiO2 führen zur Deformationen in den chemischen Bindungen und ändern den Tunnelstrom. Auch solche Einflüsse sind anhand des atomistischen Modells berechnet worden.
9

Ab-initio electronic structure and quantum transport calculations on quasi-two-dimensional materials for beyond Si-CMOS devices

Chang, Jiwon, active 2013 24 October 2013 (has links)
Atomically two-dimensional (2-D) graphene, as well as the hexagonal boron nitride dielectric have been and are continuing to be widely investigated for the next generation nanoelectronic devices. More recently, other 2-D materials and electronic systems including the surface states of topological insulators (TIs) and monolayers of transition metal dichalcogenides (TMDs) have also attracted considerable interest. In this work I have focused on these latter two material systems on possible device applications. TIs are characterized by an insulating bulk band gap and metallic Dirac surface states which are spin-polarized. Here, the electronic structures of bulk and thin film TIs are studied using ab-initio density functional theory (DFT). Band inversion, an essential characteristic of TIs, is shown in the bulk band structures. Properties of TI surface bands in thin film such as the critical film thickness to induce a gap, the thickness dependent gap size, and the localization length of surface states are reported. Effects of crystalline dielectric materials on TI surface states are also addressed by ab-initio calculations. I discuss the sensitivity of Dirac point degeneracy and linear band dispersion of TI with respect to different dielectric surface terminations as well as different relative atom positions of the dielectric and TI. Additionally, this work presents research on exciton condensation in TI using a tight-binding model combined with self-consistent non-local Hartree-Fock mean-field theory. Possibility of exciton condensation in the TI Bi₂Se₃ thin film is assessed. Non-equilibrium Green's function (NEGF) simulations with the atomistic tight-binding (TB) Hamiltonian are carried out to explore the performance of metal-oxide-semiconductor field-effect-transistor (MOSFET) and tunnel field-effect-transistor (TFET) based on the Bi₂Se₃ TI thin film. How the high dielectric constant of Bi₂Se₃ affects the performance of MOSFET and TFET is presented. Bulk TMDs such as MoS₂, WS₂ and others are the van der Waals-bonded layered material, much like graphite, except monolayer (and Bulk) TMDs have a large band gap in-contrast to graphene (and graphite). Here, the performance of nanoscale monolayer MoS₂ n-channel MOSFETs are examined through NEGF simulations using an atomistic TB Hamiltonian. N- and p-channel MOSFETs of various monolayer TMDs are also compared by the same approach. I correlate the performance differences with the band structure differences. Finally, ab-initio calculations of adatom doping effects on the monolayer MoS₂ is shown. I discuss the most stable atomic configurations, the bonding type and the amount of charge transfer from adatom to the monolayer MoS₂. / text
10

Estudo de primeiros princípios das propriedades eletrônicas de novos materiais derivados do grafeno : as nanofitas e nanofios

Oeiras, Rodrigo Yoshikawa 05 September 2012 (has links)
Made available in DSpace on 2016-06-02T20:15:25Z (GMT). No. of bitstreams: 1 4684.pdf: 17668622 bytes, checksum: 0bf46e77c798ab290c251436167def28 (MD5) Previous issue date: 2012-09-05 / Financiadora de Estudos e Projetos / In this thesis, we study new materials derived from graphene, like nanowires and nanoribbons, with numerical calculations based on the density functional theory (DFT) and the non-equilibrium Green functions (NEGF). We will discuss these theories in general and we remark that these theories are based on quantum mechanical. The results of this study indicate that the carbon ribbons and carbon wires present interesting and not predictable structural properties. The analysis of the density of stated (DOS) and its variants (LDOs, PDOS, and COOP), provides the basis for understanding the structural properties and the electronic structure of the wires and ribbons. Whenever possible, we compare the results obtained with DFT and NEGF with simpler theories, such as the valence orbital theory and the molecular orbital theory. The results show that the transport current is robust and presents an anisotropy in transmission of electrons, indicating these materials are candidates for fabrication of electronic devices, such as transistors. / Nesta tese, estudamos novos materiais derivados de grafeno, as nanofitas e os nanofios de carbono, com o uso de cálculos numéricos baseados na teoria do funcional da densidade (DFT) e na teoria de funções de Green fora do equilíbrio (NEGF). Abordaremos estas teorias de forma geral na tese e ressaltamos que são teorias baseadas em mecânica quântica. Os resultados que obtivemos deste estudo indicam que as fitas e os fios de carbono apresentam propriedades estruturais interessantes e não previsíveis. A análise da densidade de estados (DOS) e suas variantes (LDOS, PDOS e COOP), permitem o entendimento das propriedades estruturais e eletrônicas que os fios e fitas apresentam. Sempre que possível, comparamos os resultados obtidos com a DFT e a NEGF com teorias mais simples, tais como a teoria de orbital de valência e a teoria do orbital molecular. Os resultados de transporte mostram que estas estruturas apresentam uma corrente robusta e com uma anisotropia na transmissão de elétrons, indicando estes materiais como candidatos para fabricação de dispositivos eletrônicos, tais como transistores.

Page generated in 0.0273 seconds