• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of TCAD modeling for low field electronics transport and strain engineering in advanced Fully Depleted Silicon On Insulator (FDSOI) CMOS transistors / Développement de la modélisation TCAD pour l'ingénierie de la contrainte dans les dispositifs CMOS avancés sur film minces

Nier, Olivier 18 December 2015 (has links)
La conception des dispositifs nanométriques CMOS apporte de nouveaux défis à la communauté TCAD. En effet, de nos jours, les améliorations des performances des transistors ne sont plus simplement dû à une simple diminution des dimensions des dispositifs, mais aussi à l'introduction de boosters de technologies tels que des nouvelles architectures (FDSOI, trigate), des oxydes de grille à forte permittivité, l'ingénierie de la contrainte ou de nouveaux matériaux de canal (Ge, III-V). Pour faire face à tous ces nouveaux défis technologiques, la modélisation TCAD (Technology Computer Aided Design) est un outil puissant pour guider le développement mais aussi pour réduire les coûts. Dans ce contexte, ce travail de thèse vise à améliorer la modélisation TCAD pour les technologies 28/14 et 10FDSOI, avec une attention particulière sur les impacts des contraintes mécaniques sur leurs performances. Dans un premier temps, les différents mécanismes impactant la mobilité des technologies FDSOI ont été étudiés en détail. Les modèles implémentés dans des outils de simulations avancés (NEGF, Multi subbands Monte Carlo, Kubo-Greenwood) sont étudiés, comparés et des développements du logiciel interne à STMicroelectronics (UTOXPP) sont proposés. Dans un second temps, une approche « top down » a été mis en place. Elle consiste à calibrer les modèles TCAD empiriques non pas sur des mesures mais sur des outils de simulations avancés (Kubo-Greenwood). Les modèles TCAD calibrés montrent de très bons accords avec les mesures de mobilité (split-CV) en variant la température, la polarisation du substrat et l’épaisseur de l’IL (Interfacial layer). Dans un troisième temps, les méthodes utilisées lors de cette thèse pour modéliser les contraintes induites par le procédé de fabrications sont décrites. Enfin, la dernière partie concerne la modélisation TCAD des technologies 28 et 14FDSOI. Des simulations mécaniques sont effectuées pour modéliser les profils de contraintes dans les transistors. Des solutions pour optimiser la configuration des contraintes dans le canal pour ces technologies sont proposées. / The design of nanoscale CMOS devices brings new challenges to TCAD community. Indeed, nowadays, CMOS performances improvements are not simply due to device scaling but also to the introduction of new technology “boosters” such as new transistors architectures (FDSOI, trigate), high-k dielectric gate stacks, stress engineering or new channel material (Ge, III-V). To face all these new technological challenges, Technology Computer Aided Design (TCAD) is a powerful tool to guide the development of advanced technologies but also to reduce development time and cost. In this context, this PhD work aimed at improving the modeling for 28/14 and 10FDSOI technologies, with a particular attention on mechanical strain impacts. In the first section, a summary of the main models implemented in state of the art device simulators is performed. The limitations and assumptions of these models are highlighted and developments of the in-house STMicroelectronics KG solvers are discussed. In the second section, a “top down” approach has been set-up. It has consisted in using advanced physical-based solvers as a reference for TCAD empirical models calibration. Calibrated TCAD reproduced accurately split-CV mobility measurements varying the temperature, the back bias and the Interfacial Layer (IL) thickness. The third section deals with a description of the methodologies used during this thesis to model stress induced by the process flow. Simulations are compared to nanobeam diffraction (NBD) strain measurements. The use and calibration of available TCAD models to efficiently model the impact of stress on mobility in a large range of stress (up to 2GPa) is also discussed in this section. The last part deals with TCAD modeling of advanced CMOS devices for 28/14 and 10FDSOI technology development. Mechanical simulations are performed to model the stress profile in transistors and several solutions to optimize the stress configuration in sSOI and SiGe-based devices have been presented.
2

Electrical conductivity from first principles

Yuan, Zhenkun 28 March 2022 (has links)
Die zuverlässige Berechnung der elektrischen Leitfähigkeit vieler Materialien aus ersten Prinzipien erfordert die Berücksichtigung der anharmonischen Gitterdynamik. Der ab initio Kubo-Greenwood (KG)-Ansatz, der die KG-Leitfähigkeitsformel und die ab initio-Molekulardynamik kombiniert, scheint vielversprechend zu sein, da er die Anharmonizität des Gitters auf natürliche Weise berücksichtigt. Seine Anwendung auf kristalline Materialien hat jedoch bisher nur wenig Beachtung gefunden. Diese Arbeit beschreibt den KG-Ansatz und stellt eine numerische Implementierung dieses Ansatzes für den harmonischen Kristall Si und den anharmonischen Kristall SnSe vor. Die Fallstudie für Si zeigt erhebliche numerische Schwierigkeiten bei den KG-Berechnungen auf. Insbesondere behindert die erforderliche dichte k-Punkt-Abtastung die Konvergenz in Superzellengröße und macht die Berechnungen nur innerhalb der (semi-)lokalen Dichtefunktionaltheorie (DFT) durchführbar. Außerdem führt die notwendige Einführung eines Verbreiterungsparameters (η) zu einer erheblichen Unsicherheit bei der Bestimmung der Leitfähigkeit. Um diese Probleme zu lösen, werden rechnerisch effiziente Strategien diskutiert, darunter: (i) der "Scherenoperator"-Ansatz zur Korrektur des DFT-Bandlückenproblems; (ii) das "Optimal-η-Schema" zur Wahl eines geeigneten Wertes von η; und (iii) die Finite-Size-Scaling-Methode zur Ableitung der Leitfähigkeit in der thermodynamischen Grenze. Es wird festgestellt, dass die KG-Berechnungen mit diesen Strategien Leitfähigkeiten in angemessener Übereinstimmung mit den Experimenten ergeben. Der Vergleich mit früheren ab initio Boltzmann-Transportberechnungen zeigt jedoch, dass das η-Problem und die Frage der Konvergenz in Superzellengröße weiter verbesserte Konzepte erfordern. Die Fallstudie für SnSe zeigt sehr ähnliche numerische Schwierigkeiten wie im Fall von Si. Es werden Einblicke in die Auswirkung der Anharmonizität auf die Konvergenz der Superzellengröße gegeben. / Reliable first-principles calculation of the electrical conductivity in many materials requires accounting for the anharmonic lattice dynamics. The ab initio Kubo-Greenwood (KG) approach, which combines the KG conductivity formula and ab initio molecular dynamics, appears to be promising because it naturally includes lattice anharmonicity. However, its application to crystalline materials has so far received very little attention. This thesis describes the KG approach and presents a numerical implementation of this approach for the harmonic crystal Si and the anharmonic crystal SnSe. The case study for Si identifies considerable numerical difficulties in the KG calculations. In particular, the dense k-point sampling required hinders supercell-size convergence and makes the calculations only feasible within (semi)local density-functional theory (DFT). Besides, the necessary introduction of a broadening parameter (η) introduces a significant uncertainty in determining the conductivity. To address these issues, computationally efficient strategies are discussed, including: (i) the "scissor operator" approach to correct the DFT band-gap problem; (ii) the "optimal-η scheme" to choose an appropriate value of η; and (iii) the finite-size scaling method to deduce the conductivity in the thermodynamic limit. It is found that with these strategies, the KG calculations yield conductivities in reasonable agreement with experiment. Yet, comparison with previous ab initio Boltzmann transport calculations shows that the η problem and the issue of supercell-size convergence still require improved concepts. The case study for SnSe shows very similar numerical difficulties as in the case of Si. Insights into the effect of anharmonicity on the supercell-size convergence are provided.
3

Kubo–Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets

Calderín, L., Karasiev, V.V., Trickey, S.B. 12 1900 (has links)
As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (BIlichl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.
4

Étude des propriétés électroniques et des propriétés de transport de nanofils semiconducteurs et de plans de graphène.

Lherbier, Aurélien 10 October 2008 (has links) (PDF)
Ce travail de théorie et simulation est consacré a l'étude des propriétés électroniques et des propriétés de transport mésoscopique de nanostructures. Nous utilisons une méthode numérique efficace qui permet le calcul de la conductivité de Kubo-Greenwood dans un formalisme de liaisons fortes. Cette approche offre la possibilité d'étudier avec précision des systèmes de plusieurs millions d'atomes et donc de comprendre les mécanismes de transport mis en ?uvre dans les systèmes désordonnés et de faible dimensionalité. Après une brève description des deux nano-objets auxquels nous nous sommes intéressés, les nanofils de silicium 1D et les plans de graphène 2D, et après un chapitre détaillant la méthodologie numérique et les concepts liés à l'approche de Kubo-Greenwood en espace réel, nous étudions l'impact de la rugosité de surface sur le transport électronique dans les nanofils de silicium. Nous montrons que les performances en terme de transport peuvent être directement reliées a la structure électronique sous-jacente. Nous montrons également qu'en fonction de leur orientation cristallographique, de grandes différences apparaissent dans la structure électronique des nanofils de silicium, ce qui conditionne par la suite les propriétés de transport. Puis nous regardons le cas du dopage des nanofils de silicium et nous discutons des effets d'écrantage électronique. Pour finir, le dernier chapitre est consacré à l'impact du désordre d'Anderson et à l'influence des dopants sur le transport dans les plans de graphène. Nous montrons notamment que l'introduction de dopants brise la symétrie électron-trou initialement présente dans les plans de graphène.
5

Diffusion quantique et conductivité dans les systèmes apériodiques

Triozon, François 14 June 2002 (has links) (PDF)
Ce travail théorique est consacré à l'étude du transport électronique dans des solides apériodiques. Nous nous sommes placés dans l'approximation des électrons indépendants et à température nulle. Le calcul de la conductivité se ramène alors au problème de la diffusion quantique des électrons dans un potentiel apériodique. Nous avons mis au point des méthodes numériques permettant de calculer cette diffusion quantique dans des modèles de liaisons fortes de grande taille (environ un million d'orbitales) et de géométrie quelconque. Puis ces méthodes ont été appliquées à deux types de systèmes : les quasicristaux et les nanotubes de carbone. Les quasicristaux sont intrinsèquement apériodiques et leurs propriétés de transport particulières pourraient s'expliquer par des lois de diffusion quantique anormales. Nous avons étudié des modèles quasipériodiques à 2 et 3 dimensions et nous avons observé de telles lois. Nous avons aussi mis en évidence une dépendance particulière de ces lois par rapport à l'énergie du paquet d'ondes et par rapport aux éventuels défauts structuraux introduits dans le modèle. Les nanotubes de carbone multifeuillets peuvent, eux aussi, présenter une apériodicité intrinsèque dont nous avons étudié les conséquences possibles sur le transport. Nous avons étudié en particulier les oscillations de la magnétoconductance en présence d'un champ magnétique parallèle à l'axe du tube, et mis en évidence un effet de l'apériodicité sur ces oscillations.
6

Stabilisierendes Pseudogap und Streukonzept in nichtkristallinen Materialien

Arnold, Robert 12 February 1998 (has links) (PDF)
Aus der Berechnung der elektronischen Leitf¨ahigkeit nach ersten Prinzipien wird die Forderung nach Strukturmodellen mit geringerer Zustandsdichte an der Fermikante (Pseudogap) abgeleitet und in einer entsprechenden Molekulardynamik auf der Grundlage des Streukonzepts realisiert. Bei der Auswertung der Kubo-Greenwood Formel f¨ur fl¨ussige und amorphe ¨Ubergangsmetalle im Rahmen einer Superzellenmethode wird eine methodisch bedingte D¨ampfung eingef¨uhrt. Ein Superpositionskonzept f¨ur die methodischen und intrinsischen Widerstandsbeitr¨age erm¨oglicht eine Separation der intrinsischen Eigenschaften. Die Linear Muffin-Tin Orbital Methode wird zum Vergleich herangezogen. Es werden die Restwiderst¨ande der fl¨ussigen 3d-¨Ubergangsmetalle berechnet. Abweichungen vom Experiment deuten auf eine nicht richtig ber¨ucksichtigte strukturelle Ordnung und auf Spineffekte hin. Das Modell einer ungeordneten Spinausrichtung in fl¨ussigem Mangan und Eisen zeigt eine Korrektur in die Richtung des Experiments. Zur Ber¨ucksichtigung von Mehrk¨orperkr¨aften in ungeordneten Systemen wird ein Greensfunktionskonzept vorgestellt. Die Grundlage bildet eine Zerlegung der Bandenergie in der komplexen Energieebene in einen kurzreichweitigen Anteil und einem mittel- und langreichweitigen Gapenergiebeitrag. Die Gapenergie ist ein Integral ¨uber das Produkt zwischen Breite und Tiefe aller m¨oglichen Gaps im System. Die Minimierung der Gapenergie ist Verbunden mit der Ausbildung eines Minimums in der elektronischen Zustandsdichte bei der Fermikante. Die ¨Anderungen der Gapenergie bei Struktur¨anderung k¨onnen sehr effektiv ¨uber eine Streupfadoperatordarstellung f¨ur ausgew¨ahlte optimierte komplexe Energiepunkte berechnet werden. Der Realteil der Energiepunkte ist dabei die Fermienergie, der Imagin¨arteil korreliert mit der Breite eines effektiven, mittleren Pseudogaps im System. Bei einer zus¨atzlichen Ber¨ucksichtigung kurzreichweitiger repulsiver Terme wird eine Molekulardynamik m¨oglich. Es kann dabei der ¨Ubergang einer fl¨ussigen metallischen Phase zu einer festen, amorphen Phase mit ausgepr¨agtem Pseudogap simuliert werden.
7

Influence of spectral fine structure on the electronic transport of icosahedral quasicrystals

Landauro Saenz, Carlos V. 19 July 2002 (has links) (PDF)
Die Spektrale Leitfaehigkeit ikosaedrischer Approximanten zeigt Feinstrukturen (100 meV) die das besondere elektronische Transportverhalten der Quasikristalle und Approximanten erklaeren koennen. Der Ursprung diese spektralen Feinstrukturen liegt im Zusammenwirken der typischen mehrkomponentigen Atomcluster des Systems. Das Konzept stellt Struktur und chemische Dekoration auf der Laengenskala der Cluster ueber ausgedehnte Quasiperiodizitaet. Ab-initio Methode mit und ohne periodische Randbedingungen werden hier angewendet, um das Zusammenwirken der Cluster fuer niedere Approximanten ikosaedrischer Quasikristalle zu untersuchen. Deshalb werden die Linearen Muffin-Tin Orbitale in einem Superzellenkonzept, die Tight-Binding Linearen Muffin-Tin Orbitale in einem Cluster-Rekursionsverfahren und die Landauer/Buettiker-Methode in dieser Arbeit eingesetzt. Auf der Grundlage der ab-initio Ergebnisse werden spektrale Modelle (Lorentz-Funktionen) fuer den spektralen spezifischen Widerstand gebildet. Der Uebergang zum Quasikristall erfolgt durch Skalierung der Modellparameter auf der Grundlage der gemessenen Thermokraft. Die optische Leitfaehigkeit und die Temperaturverlaeufe des Widerstandes, der Thermokraft, des Hall-Koeffizienten und der elektronischen Waermeleitfaehigkeit einiger ikosaedrischer Systeme werden so durch je zwei Lorentz-Funktionen beschrieben. Wir zeigen, dass die Transportanomalien zusammen mit den spektralen Feinstrukturen empfindlich vom Subsystems des jeweils aktiven Uebergangsmetallsabhaengen (Orientierung und Dekoration der ikosaedrischen Cluster).
8

Stabilisierendes Pseudogap und Streukonzept in nichtkristallinen Materialien

Arnold, Robert 30 January 1998 (has links)
Aus der Berechnung der elektronischen Leitf¨ahigkeit nach ersten Prinzipien wird die Forderung nach Strukturmodellen mit geringerer Zustandsdichte an der Fermikante (Pseudogap) abgeleitet und in einer entsprechenden Molekulardynamik auf der Grundlage des Streukonzepts realisiert. Bei der Auswertung der Kubo-Greenwood Formel f¨ur fl¨ussige und amorphe ¨Ubergangsmetalle im Rahmen einer Superzellenmethode wird eine methodisch bedingte D¨ampfung eingef¨uhrt. Ein Superpositionskonzept f¨ur die methodischen und intrinsischen Widerstandsbeitr¨age erm¨oglicht eine Separation der intrinsischen Eigenschaften. Die Linear Muffin-Tin Orbital Methode wird zum Vergleich herangezogen. Es werden die Restwiderst¨ande der fl¨ussigen 3d-¨Ubergangsmetalle berechnet. Abweichungen vom Experiment deuten auf eine nicht richtig ber¨ucksichtigte strukturelle Ordnung und auf Spineffekte hin. Das Modell einer ungeordneten Spinausrichtung in fl¨ussigem Mangan und Eisen zeigt eine Korrektur in die Richtung des Experiments. Zur Ber¨ucksichtigung von Mehrk¨orperkr¨aften in ungeordneten Systemen wird ein Greensfunktionskonzept vorgestellt. Die Grundlage bildet eine Zerlegung der Bandenergie in der komplexen Energieebene in einen kurzreichweitigen Anteil und einem mittel- und langreichweitigen Gapenergiebeitrag. Die Gapenergie ist ein Integral ¨uber das Produkt zwischen Breite und Tiefe aller m¨oglichen Gaps im System. Die Minimierung der Gapenergie ist Verbunden mit der Ausbildung eines Minimums in der elektronischen Zustandsdichte bei der Fermikante. Die ¨Anderungen der Gapenergie bei Struktur¨anderung k¨onnen sehr effektiv ¨uber eine Streupfadoperatordarstellung f¨ur ausgew¨ahlte optimierte komplexe Energiepunkte berechnet werden. Der Realteil der Energiepunkte ist dabei die Fermienergie, der Imagin¨arteil korreliert mit der Breite eines effektiven, mittleren Pseudogaps im System. Bei einer zus¨atzlichen Ber¨ucksichtigung kurzreichweitiger repulsiver Terme wird eine Molekulardynamik m¨oglich. Es kann dabei der ¨Ubergang einer fl¨ussigen metallischen Phase zu einer festen, amorphen Phase mit ausgepr¨agtem Pseudogap simuliert werden.
9

Influence of spectral fine structure on the electronic transport of icosahedral quasicrystals

Landauro Saenz, Carlos V. 15 July 2002 (has links)
Die Spektrale Leitfaehigkeit ikosaedrischer Approximanten zeigt Feinstrukturen (100 meV) die das besondere elektronische Transportverhalten der Quasikristalle und Approximanten erklaeren koennen. Der Ursprung diese spektralen Feinstrukturen liegt im Zusammenwirken der typischen mehrkomponentigen Atomcluster des Systems. Das Konzept stellt Struktur und chemische Dekoration auf der Laengenskala der Cluster ueber ausgedehnte Quasiperiodizitaet. Ab-initio Methode mit und ohne periodische Randbedingungen werden hier angewendet, um das Zusammenwirken der Cluster fuer niedere Approximanten ikosaedrischer Quasikristalle zu untersuchen. Deshalb werden die Linearen Muffin-Tin Orbitale in einem Superzellenkonzept, die Tight-Binding Linearen Muffin-Tin Orbitale in einem Cluster-Rekursionsverfahren und die Landauer/Buettiker-Methode in dieser Arbeit eingesetzt. Auf der Grundlage der ab-initio Ergebnisse werden spektrale Modelle (Lorentz-Funktionen) fuer den spektralen spezifischen Widerstand gebildet. Der Uebergang zum Quasikristall erfolgt durch Skalierung der Modellparameter auf der Grundlage der gemessenen Thermokraft. Die optische Leitfaehigkeit und die Temperaturverlaeufe des Widerstandes, der Thermokraft, des Hall-Koeffizienten und der elektronischen Waermeleitfaehigkeit einiger ikosaedrischer Systeme werden so durch je zwei Lorentz-Funktionen beschrieben. Wir zeigen, dass die Transportanomalien zusammen mit den spektralen Feinstrukturen empfindlich vom Subsystems des jeweils aktiven Uebergangsmetallsabhaengen (Orientierung und Dekoration der ikosaedrischen Cluster).
10

Theory of Electronic Transport and Novel Modeling of Amorphous Materials

Subedi, Kashi 24 May 2022 (has links)
No description available.

Page generated in 0.0376 seconds