Spelling suggestions: "subject:"greenwood formel"" "subject:"greenwood cormel""
1 |
Stabilisierendes Pseudogap und Streukonzept in nichtkristallinen MaterialienArnold, Robert 12 February 1998 (has links) (PDF)
Aus der Berechnung der elektronischen Leitf¨ahigkeit nach ersten Prinzipien wird
die Forderung nach Strukturmodellen mit geringerer Zustandsdichte an der
Fermikante (Pseudogap) abgeleitet und in einer entsprechenden Molekulardynamik
auf der Grundlage des Streukonzepts realisiert.
Bei der Auswertung der Kubo-Greenwood Formel f¨ur fl¨ussige und amorphe
¨Ubergangsmetalle im Rahmen einer Superzellenmethode wird eine methodisch
bedingte D¨ampfung eingef¨uhrt. Ein Superpositionskonzept f¨ur die methodischen
und intrinsischen Widerstandsbeitr¨age erm¨oglicht eine Separation der
intrinsischen Eigenschaften. Die Linear Muffin-Tin Orbital Methode wird zum
Vergleich herangezogen. Es werden die Restwiderst¨ande der fl¨ussigen
3d-¨Ubergangsmetalle berechnet. Abweichungen vom Experiment deuten auf eine
nicht richtig ber¨ucksichtigte strukturelle Ordnung und auf Spineffekte hin. Das
Modell einer ungeordneten Spinausrichtung in fl¨ussigem Mangan und Eisen zeigt
eine Korrektur in die Richtung des Experiments.
Zur Ber¨ucksichtigung von Mehrk¨orperkr¨aften in ungeordneten Systemen wird ein
Greensfunktionskonzept vorgestellt. Die Grundlage bildet eine Zerlegung der
Bandenergie in der komplexen Energieebene in einen kurzreichweitigen Anteil und
einem mittel- und langreichweitigen Gapenergiebeitrag. Die Gapenergie ist ein
Integral ¨uber das Produkt zwischen Breite und Tiefe aller m¨oglichen Gaps im
System. Die Minimierung der Gapenergie ist Verbunden mit der Ausbildung eines
Minimums in der elektronischen Zustandsdichte bei der Fermikante. Die
¨Anderungen der Gapenergie bei Struktur¨anderung k¨onnen sehr effektiv ¨uber
eine Streupfadoperatordarstellung f¨ur ausgew¨ahlte optimierte komplexe
Energiepunkte berechnet werden. Der Realteil der Energiepunkte ist dabei die
Fermienergie, der Imagin¨arteil korreliert mit der Breite eines effektiven,
mittleren Pseudogaps im System. Bei einer zus¨atzlichen Ber¨ucksichtigung
kurzreichweitiger repulsiver Terme wird eine Molekulardynamik m¨oglich. Es kann
dabei der ¨Ubergang einer fl¨ussigen metallischen Phase zu einer festen,
amorphen Phase mit ausgepr¨agtem Pseudogap simuliert werden.
|
2 |
Influence of spectral fine structure on the electronic transport of icosahedral quasicrystalsLandauro Saenz, Carlos V. 19 July 2002 (has links) (PDF)
Die Spektrale Leitfaehigkeit ikosaedrischer
Approximanten zeigt Feinstrukturen (100 meV) die
das besondere elektronische Transportverhalten der
Quasikristalle und Approximanten erklaeren
koennen. Der Ursprung diese spektralen
Feinstrukturen liegt im Zusammenwirken der
typischen mehrkomponentigen Atomcluster des
Systems. Das Konzept stellt Struktur und
chemische Dekoration auf der Laengenskala der
Cluster ueber ausgedehnte Quasiperiodizitaet.
Ab-initio Methode mit und ohne periodische
Randbedingungen werden hier angewendet,
um das Zusammenwirken der Cluster fuer niedere
Approximanten ikosaedrischer Quasikristalle zu
untersuchen. Deshalb werden die Linearen
Muffin-Tin Orbitale in einem Superzellenkonzept,
die Tight-Binding Linearen Muffin-Tin Orbitale in
einem Cluster-Rekursionsverfahren und die
Landauer/Buettiker-Methode in dieser
Arbeit eingesetzt.
Auf der Grundlage der ab-initio Ergebnisse werden
spektrale Modelle (Lorentz-Funktionen) fuer den
spektralen spezifischen Widerstand gebildet.
Der Uebergang zum Quasikristall erfolgt durch
Skalierung der Modellparameter auf der Grundlage
der gemessenen Thermokraft. Die optische
Leitfaehigkeit und die Temperaturverlaeufe des
Widerstandes, der Thermokraft, des
Hall-Koeffizienten und der elektronischen
Waermeleitfaehigkeit einiger ikosaedrischer
Systeme werden so durch je zwei Lorentz-Funktionen
beschrieben.
Wir zeigen, dass die Transportanomalien zusammen
mit den spektralen Feinstrukturen empfindlich vom
Subsystems des jeweils aktiven
Uebergangsmetallsabhaengen (Orientierung und
Dekoration der ikosaedrischen Cluster).
|
3 |
Stabilisierendes Pseudogap und Streukonzept in nichtkristallinen MaterialienArnold, Robert 30 January 1998 (has links)
Aus der Berechnung der elektronischen Leitf¨ahigkeit nach ersten Prinzipien wird
die Forderung nach Strukturmodellen mit geringerer Zustandsdichte an der
Fermikante (Pseudogap) abgeleitet und in einer entsprechenden Molekulardynamik
auf der Grundlage des Streukonzepts realisiert.
Bei der Auswertung der Kubo-Greenwood Formel f¨ur fl¨ussige und amorphe
¨Ubergangsmetalle im Rahmen einer Superzellenmethode wird eine methodisch
bedingte D¨ampfung eingef¨uhrt. Ein Superpositionskonzept f¨ur die methodischen
und intrinsischen Widerstandsbeitr¨age erm¨oglicht eine Separation der
intrinsischen Eigenschaften. Die Linear Muffin-Tin Orbital Methode wird zum
Vergleich herangezogen. Es werden die Restwiderst¨ande der fl¨ussigen
3d-¨Ubergangsmetalle berechnet. Abweichungen vom Experiment deuten auf eine
nicht richtig ber¨ucksichtigte strukturelle Ordnung und auf Spineffekte hin. Das
Modell einer ungeordneten Spinausrichtung in fl¨ussigem Mangan und Eisen zeigt
eine Korrektur in die Richtung des Experiments.
Zur Ber¨ucksichtigung von Mehrk¨orperkr¨aften in ungeordneten Systemen wird ein
Greensfunktionskonzept vorgestellt. Die Grundlage bildet eine Zerlegung der
Bandenergie in der komplexen Energieebene in einen kurzreichweitigen Anteil und
einem mittel- und langreichweitigen Gapenergiebeitrag. Die Gapenergie ist ein
Integral ¨uber das Produkt zwischen Breite und Tiefe aller m¨oglichen Gaps im
System. Die Minimierung der Gapenergie ist Verbunden mit der Ausbildung eines
Minimums in der elektronischen Zustandsdichte bei der Fermikante. Die
¨Anderungen der Gapenergie bei Struktur¨anderung k¨onnen sehr effektiv ¨uber
eine Streupfadoperatordarstellung f¨ur ausgew¨ahlte optimierte komplexe
Energiepunkte berechnet werden. Der Realteil der Energiepunkte ist dabei die
Fermienergie, der Imagin¨arteil korreliert mit der Breite eines effektiven,
mittleren Pseudogaps im System. Bei einer zus¨atzlichen Ber¨ucksichtigung
kurzreichweitiger repulsiver Terme wird eine Molekulardynamik m¨oglich. Es kann
dabei der ¨Ubergang einer fl¨ussigen metallischen Phase zu einer festen,
amorphen Phase mit ausgepr¨agtem Pseudogap simuliert werden.
|
4 |
Influence of spectral fine structure on the electronic transport of icosahedral quasicrystalsLandauro Saenz, Carlos V. 15 July 2002 (has links)
Die Spektrale Leitfaehigkeit ikosaedrischer
Approximanten zeigt Feinstrukturen (100 meV) die
das besondere elektronische Transportverhalten der
Quasikristalle und Approximanten erklaeren
koennen. Der Ursprung diese spektralen
Feinstrukturen liegt im Zusammenwirken der
typischen mehrkomponentigen Atomcluster des
Systems. Das Konzept stellt Struktur und
chemische Dekoration auf der Laengenskala der
Cluster ueber ausgedehnte Quasiperiodizitaet.
Ab-initio Methode mit und ohne periodische
Randbedingungen werden hier angewendet,
um das Zusammenwirken der Cluster fuer niedere
Approximanten ikosaedrischer Quasikristalle zu
untersuchen. Deshalb werden die Linearen
Muffin-Tin Orbitale in einem Superzellenkonzept,
die Tight-Binding Linearen Muffin-Tin Orbitale in
einem Cluster-Rekursionsverfahren und die
Landauer/Buettiker-Methode in dieser
Arbeit eingesetzt.
Auf der Grundlage der ab-initio Ergebnisse werden
spektrale Modelle (Lorentz-Funktionen) fuer den
spektralen spezifischen Widerstand gebildet.
Der Uebergang zum Quasikristall erfolgt durch
Skalierung der Modellparameter auf der Grundlage
der gemessenen Thermokraft. Die optische
Leitfaehigkeit und die Temperaturverlaeufe des
Widerstandes, der Thermokraft, des
Hall-Koeffizienten und der elektronischen
Waermeleitfaehigkeit einiger ikosaedrischer
Systeme werden so durch je zwei Lorentz-Funktionen
beschrieben.
Wir zeigen, dass die Transportanomalien zusammen
mit den spektralen Feinstrukturen empfindlich vom
Subsystems des jeweils aktiven
Uebergangsmetallsabhaengen (Orientierung und
Dekoration der ikosaedrischen Cluster).
|
5 |
Electrical conductivity from first principlesYuan, Zhenkun 28 March 2022 (has links)
Die zuverlässige Berechnung der elektrischen Leitfähigkeit vieler Materialien aus ersten Prinzipien erfordert die Berücksichtigung der anharmonischen Gitterdynamik. Der ab initio Kubo-Greenwood (KG)-Ansatz, der die KG-Leitfähigkeitsformel und die ab initio-Molekulardynamik kombiniert, scheint vielversprechend zu sein, da er die Anharmonizität des Gitters auf natürliche Weise berücksichtigt. Seine Anwendung auf kristalline Materialien hat jedoch bisher nur wenig Beachtung gefunden. Diese Arbeit beschreibt den KG-Ansatz und stellt eine numerische Implementierung dieses Ansatzes für den harmonischen Kristall Si und den anharmonischen Kristall SnSe vor. Die Fallstudie für Si zeigt erhebliche numerische Schwierigkeiten bei den KG-Berechnungen auf. Insbesondere behindert die erforderliche dichte k-Punkt-Abtastung die Konvergenz in Superzellengröße und macht die Berechnungen nur innerhalb der (semi-)lokalen Dichtefunktionaltheorie (DFT) durchführbar. Außerdem führt die notwendige Einführung eines Verbreiterungsparameters (η) zu einer erheblichen Unsicherheit bei der Bestimmung der Leitfähigkeit. Um diese Probleme zu lösen, werden rechnerisch effiziente Strategien diskutiert, darunter: (i) der "Scherenoperator"-Ansatz zur Korrektur des DFT-Bandlückenproblems; (ii) das "Optimal-η-Schema" zur Wahl eines geeigneten Wertes von η; und (iii) die Finite-Size-Scaling-Methode zur Ableitung der Leitfähigkeit in der thermodynamischen Grenze. Es wird festgestellt, dass die KG-Berechnungen mit diesen Strategien Leitfähigkeiten in angemessener Übereinstimmung mit den Experimenten ergeben. Der Vergleich mit früheren ab initio Boltzmann-Transportberechnungen zeigt jedoch, dass das η-Problem und die Frage der Konvergenz in Superzellengröße weiter verbesserte Konzepte erfordern. Die Fallstudie für SnSe zeigt sehr ähnliche numerische Schwierigkeiten wie im Fall von Si. Es werden Einblicke in die Auswirkung der Anharmonizität auf die Konvergenz der Superzellengröße gegeben. / Reliable first-principles calculation of the electrical conductivity in many materials requires accounting for the anharmonic lattice dynamics. The ab initio Kubo-Greenwood (KG) approach, which combines the KG conductivity formula and ab initio molecular dynamics, appears to be promising because it naturally includes lattice anharmonicity. However, its application to crystalline materials has so far received very little attention. This thesis describes the KG approach and presents a numerical implementation of this approach for the harmonic crystal Si and the anharmonic crystal SnSe. The case study for Si identifies considerable numerical difficulties in the KG calculations. In particular, the dense k-point sampling required hinders supercell-size convergence and makes the calculations only feasible within (semi)local density-functional theory (DFT). Besides, the necessary introduction of a broadening parameter (η) introduces a significant uncertainty in determining the conductivity. To address these issues, computationally efficient strategies are discussed, including: (i) the "scissor operator" approach to correct the DFT band-gap problem; (ii) the "optimal-η scheme" to choose an appropriate value of η; and (iii) the finite-size scaling method to deduce the conductivity in the thermodynamic limit. It is found that with these strategies, the KG calculations yield conductivities in reasonable agreement with experiment. Yet, comparison with previous ab initio Boltzmann transport calculations shows that the η problem and the issue of supercell-size convergence still require improved concepts. The case study for SnSe shows very similar numerical difficulties as in the case of Si. Insights into the effect of anharmonicity on the supercell-size convergence are provided.
|
Page generated in 0.0461 seconds