• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 10
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 163
  • 163
  • 48
  • 36
  • 34
  • 27
  • 24
  • 24
  • 24
  • 24
  • 22
  • 21
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures

Yankowitz, Matthew Abraham January 2015 (has links)
A large family of materials, collectively known as "van der Waals materials," have attracted enormous research attention over the past decade following the realization that they could be isolated into individual crystalline monolayers, with charge carriers behaving effectively two-dimensionally. More recently, an even larger class of composite materials has been realized, made possible by combining the isolated atomic layers of different materials into "van der Waals heterostructures," which can exhibit electronic and optical behaviors not observed in the parent materials alone. This thesis describes efforts to characterize the atomic-scale structural and electronic properties of these van der Waals materials and heterostructures through scanning tunneling microscopy measurements. The majority of this work addresses the properties of monolayer and few-layer graphene, whose charge carriers are described by massless and massive chiral Dirac Hamiltonians, respectively. In heterostructures with hexagonal boron nitride, an insulating isomorph of graphene, we observe electronic interference patterns between the two materials which depend on their relative rotation. As a result, replica Dirac cones are formed in the valence and conduction bands of graphene, with their energy tuned by the rotation. Further, we are able to dynamically drag the graphene lattice in these heterostructures, owing to an interaction between the scanning probe tip and the domain walls formed by the electronic interference pattern. Similar dragging is observed in domain walls of trilayer graphene, whose electronic properties are found to depend on the stacking configuration of the three layers. Scanning tunneling spectroscopy provides a direct method for visualizing the scattering pathways of electrons in these materials. By analyzing the scattering, we can directly infer properties of the band structures and local environments of these heterostructures. In bilayer graphene, we map the electrically field-tunable band gap and extract electronic hopping parameters. In WSe₂, a semiconducting transition metal dichalcogenide, we observe spin and layer polarizations of the charge carriers, representing a coupling of the spin, valley and layer degrees of freedom.
22

Structural studies of defects in two-dimensional materials with atomic resolution

Chen, Qu January 2017 (has links)
Defective structures in two-dimensional (2D) materials have been proved to have significant influences on the materials' properties. Understanding structural defects in 2D materials at atomic scale is therefore required. With the use of advanced imaging techniques, one of the main approaches applied in this project was aberration-corrected transmission electron microscopy (AC-TEM), the structures are able to be resolved with single-atom sensitivity with the reduction of both spherical aberration and the influence of chromatic aberration. This laid the foundation for the first two experiments, which involve the bond length measurement of each C-C bond within three types of divacancies and Si-C bonds at graphene edges. The former explains the tendency of bond rotations within the divacancies from the perspective of strain inside the defective areas and surrounding lattice; the latter revels the interactions between isolated Si atoms and zigzag/armchair graphene edges. The use of in-situ heating holder in the AC-TEM makes the direct visualization of structures and their dynamics at elevated temperatures possible. The Si-graphene edge interactions, as well as the following two experiments are all designed to study the high-temperature performances for different systems. Gold nanoclusters are introduced to monolayer graphene by thermal evaporation to study the interaction between gold and graphene at elevated temperature. Due to the strong interaction between gold and graphene, gold crystals are able to adapt to planar configurations with two different crystalline forms, and an epitaxial relationship was found for planar gold crystals and graphene. Atomically flat and long line defects and zigzag edges in monolayer molybdenum disulfide (MoS<sub>2</sub>) are successfully created by in-situ thermal annealing. The relationship between S vacancy mobility and defect forms are revealed based on the experiment. High-temperature atomic configurations of line defects and edge terminations are resolved in the first time. Their electronic properties are also explored with the support of density functional theory calculations.
23

Synthesis of Multiple Constituent Ferecrystal Heterostructures

Westover, Richard 23 February 2016 (has links)
The ability to form multiple component heterostructures of two-dimensional materials promises to provide access to hybrid materials with tunable properties different from those of the bulk materials or two-dimensional constituents. By taking advantage of the unique properties of different constituents, numerous applications are possible for which none of the individual components are viable. The synthesis of multiple component heterostructures, however, is nontrivial, relying on either the cleaving and stacking of bulk materials in a “scotch tape” type technique or finding coincidentally favorable growth conditions which allow layers to be grown epitaxially on each other in any order. In addition, alloying of miscible materials occurs when the modulation wavelength is small. These synthetic challenges have limited the ability of scientists to fully utilize the potential of multiple component heterostructures. An alternative synthetic route to multiple component heterostructures may be found through expansion of the modulated elemental reactant technique which allows access to metastable products, known as ferecrystals, which are otherwise inaccessible. This work focuses on the expansion of the modulated elemental reactants technique for the formation of ferecrystals containing multiple constituents. As a starting point, the synthesis of the first alloy ferecrystals (SnSe)1.16-1.09([NbxMo1-x]Se2) will be discussed. The structural and electrical characterization of these compounds will then be used to determine the intermixing of the first three component ferecrystal heterojunction ([SnSe]1+δ)([{MoxNb1-x}Se2]1+γ)([SnSe]1+δ)({NbyMo1-y}Se2). Then, by synthesizing ([SnSe]1+δ)m([{MoxNb1-x}Se2]1+γ)1([SnSe]1+δ)m({NbxMo1-x}Se2)1 (m = 0 - 4) compounds with increasing thicknesses of SnSe, the interdiffusion of miscible constituents in ferecrystals will be studied. In addition, by comparison of the ([SnSe]1+δ)m ([{MoxNb1-x}Se2]1+γ)1([SnSe]1+δ)m({NbxMo1-x}Se2)1 (m = 0 - 4) compounds to the ([SnSe]1+δ)m(NbSe2)1 (m = 1 - 8) compounds the electronic interactions of the MoSe2 and NbSe2 layers will be determined. Finally, the effects of different alloying strategies and the interdiffusion of miscible constituents will be further examined by the synthesis of ordered ([SnSe]1.15)1([TaxV1-x]Se2)1([SnSe]1.15)1([VyTa1-y]Se2)1 and ([SnSe]1+δ) ([TaxV1-x]Se2) compounds with the effect of isoelectric doping on the charge density wave transition in (SnSe)1.15(VSe2) also being explored. This work contains previously published and unpublished co-authored material.
24

Structural Modeling of Two Dimensional Amorphous Materials

January 2014 (has links)
abstract: The continuous random network (CRN) model of network glasses is widely accepted as a model for materials such as vitreous silica and amorphous silicon. Although it has been more than eighty years since the proposal of the CRN, there has not been conclusive experimental evidence of the structure of glasses and amorphous materials. This has now changed with the advent of two-dimensional amorphous materials. Now, not only the distribution of rings but the actual atomic ring structure can be imaged in real space, allowing for greater charicterization of these types of networks. This dissertation reports the first work done on the modelling of amorphous graphene and vitreous silica bilayers. Models of amorphous graphene have been created using a Monte Carlo bond-switching method and MD method. Vitreous silica bilayers have been constructed using models of amorphous graphene and the ring statistics of silica bilayers has been studied. / Dissertation/Thesis / Doctoral Dissertation Physics 2014
25

Atomic Scale Characterizations of Two-dimensional Anisotropic Materials and Their Heterostructures

January 2018 (has links)
abstract: There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in these novel 2D materials gives rise to highly anisotropic physical properties that enable unique applications in next-gen electronics and optoelectronics. For example, higher carrier mobility along one preferential crystal direction for anisotropic field effect transistors and anisotropic photon absorption for polarization-sensitive photodetectors. This dissertation endeavors to address two key challenges towards practical application of anisotropic materials. One is the scalable production of high quality 2D anisotropic thin films, and the other is the controllability over anisotropy present in synthesized crystals. The investigation is focused primarily on rhenium disulfide because of its chemical similarity to conventional 2D transition metal dichalcogenides and yet anisotropic nature. Carefully designed vapor phase deposition has been demonstrated effective for batch synthesis of high quality ReS2 monolayer. Heteroepitaxial growth proves to be a feasible route for controlling anisotropic directions. Scanning/transmission electron microscopy and angle-resolved Raman spectroscopy have been extensively applied to reveal the structure-property relationship in synthesized 2D anisotropic layers and their heterostructures. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2018
26

Ultrafast Dynamics of Two Dimensional Materials

Golla, Dheeraj, Golla, Dheeraj January 2017 (has links)
Two dimensional (2D) materials are poised to revolutionize the future of optics and electronics. The past decade saw intense research centered around graphene. More recently, the tide has shifted to a bigger class of two-dimensional materials including graphene but more expansive in their capabilities. The so called ‘2D material zoo’ includes metals, semi-metals, semiconductors, superconductors and insulators. The possibility of mixing and matching 2D materials to fabricate heterostructures with desirable properties is very exciting. To make devices with superior electronic, optical and thermal properties, we need to understand how the electrons, phonons and other quasi particles interact with each other and exchange energy in the femtosecond and nanosecond timescales. To measure the timescales of energy distribution and dissipation, I used ultrafast pump-probe spectroscopy to perform time-domain measurements of optical absorption. This approach allows us to understand the impact of manybody interactions on the bandstructure and carrier dynamics of 2D materials. After a brief introduction to femtosecond laser spectroscopy, I will explore the transient absorption dynamics of three classes of 2D materials: intrinsic graphene, graphene-hBN heterostructures and Transition Metal Dichalcogenides (TMDs). We will see that using pumpprobe measurements around the high energy M-point of intrinsicgraphene, we can extract the value of the acoustic deformation potential which is vital in characterizing the electron-acoustic phonon interactions. In the next part of the thesis, I will delineate the role of the substrate in the cooling dynamics in graphene devices. We will see that excited carriers in graphene on hBN substrates cool much faster that on SiO2 substrates due to faster decay of the optical phonons in graphenehBN heterostructures. These results show that graphene-hBN heterostructures can solve the hot phonon bottleneck that plagues graphene devices at high power densities. In the last part, I will demonstrate the role of phonon induced bandgap renormalization in the carrier dynamics of TMD materials and measure the timescale of phonon decay through the generation of low-energy phonons and transfer to the substrate. This study will help us understand carrier recombination in TMD devices under high-bias conditions which show great potential in opto-electronic applications such as photovoltaics, LEDs etc.
27

Riveting two-dimensional materials: exploring strain physics in atomically thin crystals with microelectromechanical systems

Christopher, Jason Woodrow 18 March 2018 (has links)
Two dimensional (2D) materials can withstand an order of magnitude more strain than their bulk counterparts, which results in dramatic changes to electrical, thermal and optical properties. These changes can be harnessed for technological applications such as tunable light emitting diodes or field effect transistors, or utilized to explore novel physics like exciton confinement, pseudo-magnetic fields (PMFs), and even quantum gravity. However, current techniques for straining atomically thin materials offer limited control over the strain field, and require bulky pressure chambers or large beam bending equipment. This dissertation describes the development of micro-electromechanical systems (MEMS) as a platform for precisely controlling the magnitude and orientation of the strain field in 2D materials. MEMS are a versatile platform for studying strain physics. Mechanical, electrical, thermal and optical probes can all be easily incorporated into their design. Further, because of their small size and compatibility with electronics manufacturing methods, there is an achievable pathway from the laboratory bench to real-world application. Nevertheless, the incorporation of atomically thin crystals with MEMS has been hampered by fragile, non-planer structures and low friction interfaces. We have innovated two techniques to overcome these critical obstacles: micro-structure assisted transfer to place the 2D materials on the MEMS gently and precisely, and micro-riveting to create a slip-free interface between the 2D materials and MEMS. With these advancements, we were able to strain monolayer molybdenum disulfide (MoS2) to greater than 1\% strain with a MEMS for the first time. The dissertation develops the theoretical underpinnings of this result including original work on the theory of operation of MEMS chevron actuators, and strain generated PMFs in transition metal dichalcogenides, a large class of 2D materials. We conclude the dissertation with a roadmap to guide and inspire future physicists and engineers exploring strain in 2D systems and their applications. The roadmap contains ideas for next-generation fabrication techniques to improve yield, sample quality, and add capabilities. We have also included in the roadmap proposals for experiments such as a speculative technique for realizing topological quantum field theories that mimics recent theoretical wire construction methods.
28

Two-Dimensional Transition Metal Carbides (MXenes) for Electronic and Energy Harvesting Applications

Kim, Hyunho 13 October 2020 (has links)
Nanomaterials have been served as essential building blocks in the era of nanotechnology. Nanomaterials often exhibit different properties compared to their bulk phase, due to heavily enlarged portion of surface characteristics to the bulk. Beyond the simple size- effect, nanomaterials can be classified into 0D, 1D, and 2D materials depends on the number of restricted dimensionalities. They exhibit different unique properties and transport mechanism due to the quantum confinement effect. MXenes are one of the latest additions of 2D material family that can be obtained by selective chemical etching and exfoliation of layered ternary precursors (Mn+1AXn phases). Due to the unique etch process, surface functional groups (such as oxygen, hydroxyl, fluorine, etc) are formed at the surface of MXenes. This benefits MXenes for stable aqueous dispersions due to their hydrophilic surface. The coexistence of hydrophilicity and high electrical conductivity promised MXenes in superior performance in electrochemical energy storage and electromagnetic interference shielding applications. These characteristics are equally important for electronic applications. From the synthesis of MXene suspension to thin film deposition by spray-coating and photolithography patterning of MXene films are discussed for electronic device applications of MXenes. Vacuum-assisted filtration method was used for Mo-based MXene freestanding papers for investigation of thermoelectric energy harvesting performances. Both n-type ZnO and p-type SnO thin film transistors with MXene electrical contacts (gate, source, and drain electrodes) have been demonstrated by lift-off patterning method. Their complementary metal-oxide-semiconductor (CMOS) inverter exhibits a high gain value of 80 V/V at a supply voltage of 5 V. The lift-off patterning is simple but effective method for top-contact electrode patterning. However, it has a disadvantage of remaining sidewall-like MXene residue, resulting in leakage issues in the bottom-contact transistor structure. Hence, dry-etch patterning method is developed which allows direct patterning of MXene nanosheet thin films through conventional photolithography process. The conductive MXene electrode array was integrated into a quantum dot electric double layer transistors by all solution processes, which possess impressive performance including electron mobility of 3.3 cm2/V·s, current modulation of 104, threshold voltage as low as 0.36 V at low driving gate voltage range of only 1.25 V.
29

Band Alignment Determination of Two-Dimensional Heterojunctions and Their Electronic Applications

Chiu, Ming-Hui 09 May 2018 (has links)
Two-dimensional (2D) layered materials such as MoS2 have been recognized as high on-off ratio semiconductors which are promising candidates for electronic and optoelectronic devices. In addition to the use of individual 2D materials, the accelerated field of 2D heterostructures enables even greater functionalities. Device designs differ, and they are strongly controlled by the electronic band alignment. For example, photovoltaic cells require type II heterostructures for light harvesting, and light-emitting diodes benefit from multiple quantum wells with the type I band alignment for high emission efficiency. The vertical tunneling field-effect transistor for next-generation electronics depends on nearly broken-gap band alignment for boosting its performance. To tailor these 2D layered materials toward possible future applications, the understanding of 2D heterostructure band alignment becomes critically important. In the first part of this thesis, we discuss the band alignment of 2D heterostructures. To do so, we firstly study the interlayer coupling between two dissimilar 2D materials. We conclude that a post-anneal process could enhance the interlayer coupling of as-transferred 2D heterostructures, and heterostructural stacking imposes similar symmetry changes as homostructural stacking. Later, we precisely determine the quasi particle bandgap and band alignment of the MoS2/WSe2 heterostructure by using scan tunneling microscopy/spectroscopy (STM/S) and micron-beam X-ray photoelectron spectroscopy (μ-XPS) techniques. Lastly, we prove that the band alignment of 2D heterojunctions can be accurately predicted by Anderson’s model, which has previously failed to predict conventional bulk heterostructures. In the second part of this thesis, we develop a new Chemical Vapor Deposition (CVD) method capable of precisely controlling the growth area of p- and n-type transition metal dichalcogenides (TMDCs) and further form lateral or vertical 2D heterostructures. This method also allows p- and n-type TMDCs to separately grow in a selective area in one step. In addition, we demonstrate a first bottom-up 2D complementary inverter based on hetero-TMDCs.
30

Toward Controlled Growth of Two-Dimensional Transition Metal Dichalcogenides: Chemical Vapor Deposition Approaches

Wan, Yi 13 May 2021 (has links)
Recently, atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) materials have drawn significant attention due to their unique optical and electrical properties1, 2. This offers unique opportunities for the next-generation electronic and optoelectronic devices3. Specifically, recent innovations in the big-data-driven prediction of new 2D materials, integration of new device architectures, interfacial engineering of contacts between semiconductor/metals and semiconductor/dielectrics as well as encapsulation in hexagonal boron nitride4, 5 have further propelled the electrical mobility to be on a par with or even beyond the silicon (Si) counterpart. These strategies hold tantalizing prospects on extending the Moore's law. Yet, there is still room for improvement before 2D TMDCs become truly technologically relevant. The challenge lies in the full validation of the intrinsic charge transport that is associated with the specific nature and ordered arrangement of atoms in the atomically thin crystal lattice. This requires, the controlled stitch of both metals and chalcogenides in an atom-by-atom fashion. To this end, a variety of synthetic approaches have been developed, this includes but not limited to chemical vapor deposition (CVD) 6, 7, mechanical exfoliation8 and solution-based exfoliation9. Among which, CVD shows better controllability over thicknesses, geometric shapes, sizes, and qualities through manipulation of the growth factors, e.g., growth temperature, pressure, precursor ratio, and gas carrier. These complex growth environments will significantly confound the scalability, crystallinity, defect density, and reproducibility of the CVD approach. Therefore, an impetus exists to gain fundamental insights into the universal growth mechanism that is currently lacking and therefore curbs the realization o the controlled epitaxy of high-mobility three-atom-thick semiconducting TMDCs films with wafer-scale-homogeneity. In this thesis, a mechanistic study toward revealing the epitaxy growth mechanism is established to include 1) epitaxy growth of multilayer, 2) epitaxy growth of heterostructures, and 3) epitaxy growth of high quality (exceedingly low defect density) of 2D TMDCs materials through a controlled CVD strategy.

Page generated in 0.0579 seconds