• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 10
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 163
  • 163
  • 48
  • 36
  • 34
  • 27
  • 24
  • 24
  • 24
  • 24
  • 22
  • 21
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structure Characterization and Electronic Properties Investigation of Two-Dimensional Materials

Baniasadi, Fazel 17 June 2021 (has links)
This dissertation will have three chapters. In chapter one, a comprehensive review on defects in two dimensional materials will be presented. The aim of this review is to elaborate on different types of defects in two dimensional (2D) materials like graphene and transition metal dichalcogenides (TMDs). First, different types of point and line defects, e.g. vacancies, anti-sites, guest elements, adatoms, vacancy clusters, grain boundaries, and edges, in these materials are categorized in terms of structure. Second, interactions among defects are discussed in terms of their rearrangement for low-energy configurations. Before studying the electronic and magnetic properties of defective 2D materials, some of the structures are considered in order to see how defect structure evolves to a stable defect configuration. Next, the influence of defects on electronic and magnetic properties of 2D materials is discussed. Finally, the dynamic behavior of defects and 2D structures under conditions such as electron beam irradiation, heat treatment, and ambient conditions, is discussed. Later as a case study, defects in a two dimensional transition metal dichalcogenide will be presented. Among two-dimensional (2D) transition metal dichalcogenides (TMDs), platinum diselenide (PtSe2) stands at a unique place in the sense that it undergoes a phase transition from type-II Dirac semimetal to indirect-gap semiconductor as thickness decreases. Defects in 2D TMDs are ubiquitous and play crucial roles in understanding and tuning electronic, optical, and magnetic properties. Here intrinsic point defects in ultrathin 1T-PtSe2 layers grown on mica were investigated through the chemical vapor transport (CVT) method, using scanning tunneling microscopy and spectroscopy (STM/STS) and first-principles calculations. Five types of distinct defects were observed from STM topography images and the local density of states of the defects were obtained. By combining the STM results with first-principles calculations, the types and characteristics of these defects were identified, which are Pt vacancies at the topmost and next monolayers, Se vacancies in the topmost monolayer, and Se antisites at Pt sites within the topmost monolayer. Our study shows that the Se antisite defects are the most abundant with the lowest formation energy in a Se-rich growth condition, in contrast to cases of 2D molybdenum disulfide (MoS2) family. Our findings would provide critical insight into tuning of carrier mobility, charge carrier relaxation, and electron-hole recombination rates by defect engineering or varying growth condition in few-layer 1T-PtSe2 and other related 2D materials. Also, in order to investigate the layer dependency of vibrational and electronic properties of two dimensional materials, 2M-WS2 material was selected. Raman spectroscopy and DFT calculation proved that all Raman active modes have a downshift when material is thinned to few layers (less than 5 layers). It was proven that there is a strong interaction between layers such that by decreasing the number of layers, the downshift in Raman active modes is mostly for the ones which belong to out-of-plane atomic movements and the most downshift is for the Ag2 Raman active mode. Also, I investigated the effect of number of layers on the band structure and electronic properties of this material. As the number of layers decreases, band gap does not change until the materials is thinned down to only a single monolayer. For a single monolayer of 2M-WS2, there is an indirect band gap of 0.05eV; however, with applying in-plane strain to this monolayer, the material takes a metallic behavior as the strain goes beyond ±1%. / Doctor of Philosophy / Graphite (consisting of graphene as building blocks) and TMDS in bulk form are layered and with exfoliation one can reach to few layers which is called two-dimension. Two dimensional materials like graphene have been used in researches vastly due to their unique properties, e.g. high carrier mobility, and tunable electronic properties. Transition metal dichalcogenides (TMDs) with a general formula of MX2, where M represents transition metal elements (groups 4-10) and X represents chalcogen elements (S, Se or Te), are another family of two-dimensional materials which have been extensively studied in the past few years. Besides exfoliation, there are also synthesis methods to produce two dimensional materials, e.g. chemical vapor deposition and chemical vapor transport. Normally, after synthesizing these materials, researchers investigate structure and electronic properties of these materials. There might be some atoms which no longer exist in the structure; hence, those are replaced by either vacancies or other elements which all of them are called defects. In chapter 1, defects in graphene and transition metal dichacolgenides were investigated, carefully. Later, dynamic behavior of defects in these materials were investigated and finally, the effect of defects on the electronic properties of the two dimensional materials were investigated. Chapter two talks about a case study which is two dimensional 1T-PtSe2. In this chapter, 5 different kinds of defects were studied using scanning tunneling microscopy and spectroscopy investigations and density functional theory was used to prove our assumptions of the origin of defects. Also, another thing which is investigated by researcher is that how atoms in two dimensional materials vibrate and how the number of layers in the two dimensional material influences vibrations of atoms. Other than this, electronic properties of these materials is dependent upon the number of layers. When these materials are synthesized, there is a stress applied to the material due the mismatch between the material and its substrate, so it is worth investigating the effect of stress (strain) on the structure, and electronic properties of the material of interest. For this purpose, 2M-WS2 was exfoliated on Si/SiO2 substrate and the layer dependency of its vibrational modes was investigated using Raman spectroscopy and density functional theory calculation. Also, in order to investigate the influence of stress (strain) on the electronic properties of two dimensional 2M-WS2, a single monolayer of this materials underwent a series of strains in density functional theory calculations and the effect of strain on the electronic properties of this material was investigated.
42

Hot-carrier luminescence in graphene

Alexeev, Evgeny January 2015 (has links)
In this thesis, the effect of the sample properties on the characteristics of the hot carrier luminescence in graphene is investigated. The present work focuses on the two main issues described below. The first issue is the modification effects of near-infrared pulsed laser excitation on graphene. For excitation fluences several orders of magnitude lower than the optical damage threshold, the interaction with ultrafast laser pulses is found to cause a stable change in the properties of graphene. This photomodification also results in a decrease of the hot photoluminescence intensity. The detailed analysis shows that ultrafast photoexcitation leads to an increase in the local level of hole doping, as well as a change in the mechanical strain. The variation of doping and strain are linked with the enhanced adsorption of atmospheric oxygen caused by the distortion of the graphene surface. These findings demonstrate that ultrashort pulsed excitation can be invasive even if a relatively low laser power is used. Secondly, the variation of the hot photoluminescence intensity with the increasing charge carrier density in graphene is investigated. The electro-optical measurements performed using graphene field-effect transistors show a strong dependence of the photoluminescence intensity on the intrinsic carrier concentration. The emission intensity has a maximum value in undoped graphene and decreases with the increasing doping level. The theoretical calculations performed using a refined two-temperature model suggest that the reduction of the photoluminescence intensity is caused by an increase in the hot carrier relaxation rate. The modification of the carrier relaxation dynamics caused by photoinduced doping is probed directly using the two-pulse correlation measurements. The discovered sensitivity of the hot photoluminescence to the intrinsic carrier concentration can be utilised for spatially-resolved measurements of the Fermi level position in graphene samples, offering an advantage in resolution and speed.
43

Modelování bioanorganických rozhraní / Modeling of bio-inorganic interfaces

Trachta, Michal January 2016 (has links)
Dynamic atomistic description of bio-inorganic interfaces represents a challenging problem for contemporary computational chemistry. A detailed analysis of processes occurring on the interface between biomolecule and inorganic material can help our understanding of various processes, ranging from chromatography and protein separation to protein immobilization techniques and their effect on enzyme activity or protein conformational stability. High complexity of bio- inorganic interfaces prevents detailed investigation using accurate, but computationally demanding ab initio methods. Since reliable empirical potentials are not available for these systems, the aim of this work is to develop force fields based on ab initio data as well as a general methodology for parameterization of such force fields. Our potential fitting procedure was carried out in an automated fashion based on molecular dynamics simulation. The resulting potentials were applied for investigation of inorganic material's influence on polypeptide conformations.
44

High-Performance Detectors Based on the Novel Electronic and Optoelectronic Properties of Crystalline 2D van der Waals Solids

Saenz Saenz, Gustavo Alberto 05 1900 (has links)
In this work, we study the properties and device applications of MoS2, black phosphorus, MoOx, and NbSe2. We first start with the design, fabrication, and characterization of ultra-high responsivity photodetectors based on mesoscopic multilayer MoS2. The device architecture is comprised of a metal-semiconductor-metal (MSM) photodetector, where Mo was used as the contact metal to suspended MoS2 membranes. The dominant photocurrent mechanism was determined to be the photoconductive effect, while a contribution from the photogating effect was also noted from trap-states that yielded a wide spectral photoresponse from UV-to-IR with an external quantum efficiency (EQE) ~ 104. From time-resolved photocurrent measurements, a fast decay time and response time were obtained with a stream of incoming ON/OFF white light pulses. Another interesting semiconductor 2D material that has attracted special attention due to its small bandgap and ultra-high hole mobility is the black phosphorus. An analysis of the optoelectronic properties and photocurrent generation mechanisms in two-dimensional (2D) multilayer crystallites of black phosphorus (BP) was conducted from 350 K down to cryogenic temperatures using a broad-band white light source. The Mo-BP interface yielded a low Schottky barrier "φ" _"SB" ~ -28.3 meV and a high photoresponsivity R of ~ 2.43 x 105 A/W at a source-drain bias voltage of ~ 0.5 V (300 K, and incident optical power ~ 3.16 μW/cm2). Our report is the first to highlight the empirical use of Mo as a contact metal with BP. From the analysis conducted on the BP devices, the thermally driven photocurrent generation mechanism arising from the photobolometric effect (PBE) dominated the carrier dynamics for T > 181 K since the photocurrent Iph and the bolometric coefficient β undergo a transition in polarity from positive to negative. Our results show the promise of BP to potentially advance thermoelectric and optoelectronic devices stemming from this mono-elemental, direct bandgap 2D van der Waals solid. Another intriguing metallic 2D material is superconducting 2H-NbSe2. Here we present the temperature-dependent Raman spectroscopy and electronic transport on bulk NbSe2, carried out to investigate the scattering mechanisms. We report on the photoresponse of direct probed mesoscopic 2H-NbSe2 as a function of laser energy for lasers at 405 nm, 660 nm, and 1060 nm wavelengths used to irradiate the device, where the modulation from the superconducting-to-normal-state is detected through photomodulation. Additionally, the various oxidation levels of molybdenum oxide have interesting optical and electrical properties as a function of the oxygen vacancy and stoichiometry. The substoichiometric MoOx (2 < x < 3) behaves as a high work function conductor due to its metallic defect band. As a result, one of the potential applications of MoOx is for electrical contacts providing high hole injection or extraction. In this work, we have synthesized MoOx nanosheets via chemical vapor deposition and a four-terminal device was fabricated via e-beam lithography and electronic transport was measured as a function of temperature. Outstanding properties were obtained from our MoOx nanosheets, including a high conductivity of ~ 6,680.3 S cm-1, a superior temperature coefficient of resistance ~ -0.10%, and a high sensitivity based on the bolometric coefficient β of ~ 0.152 mS K-1. In summary, this work pushes the state-of-the-art in enabling 2D van der Waals materials for next-generation high-performance detectors.
45

Amélioration des propriétés physiques de matériaux de basse-dimensionnalité par couplage dans des hétérostructures Van der Waals / Enhancing physical properties of low dimensional materials by engineering its environment in composite Van der Waals heterostructures

Nayak, Goutham 18 December 2018 (has links)
Les propriétés intrinsèques extraordinaires de ces matériaux de faible dimension dépendent fortement de l'environnement auquel ils sont soumis. Par conséquent, ils doivent être préparés, traités et caractérisés sans défauts. Dans cette thèse, je discute de la manière de contrôler l'environnement des nanomatériaux de faible dimension tels que le graphène, le MoS$_{2}$ et les nanotubes de carbone afin de préserver leurs propriétés physiques intrinsèques. De nouvelles solutions pour l'amélioration des propriétés sont discutées en profondeur. Dans la première partie, nous fabriquons des dispositifs d'hétérostructure à base de graphène de Van der Waals (VdW) de dernière génération, en contact avec les bords, encapsulés dans du nitrure de bore hexagonal (hBN), afin d'obtenir un transport balistique. Nous utilisons une technique basée sur des mesures de bruit 1 / f pour sonder le transport de masse et de bord lors de régimes Quantum Hall entiers et fractionnaires. Dans la deuxième partie, le même concept de fabrication des hétérostructures VdW a été étendu pour encapsuler la couche monocouche MoS $_{2}$ dans le hBN afin d'en modifier les propriétés optiques. À cet égard, nous présentons une étude approfondie sur l'origine et la caractérisation des défauts intrinsèques et extrinsèques et leur incidence sur les propriétés optiques. En outre, nous décrivons une technique pour sonder le couplage entre couches ainsi que la génération de lumière avec une résolution spatiale inférieure à la limite de diffraction de la lumière. Enfin, nous discutons d'un processus systémique naturel visant à améliorer les propriétés mécaniques de la soie polymérique naturelle à l'aide d'une nanotubes de carbone à paroi unique fabriqués par HipCO comme aliment pour le ver à soie. / The extraordinary intrinsic properties of low dimensional materials depend highly on the environment they are subjected to. Hence they need to be prepared, processed and characterized without defects. In this thesis, I discuss about how to control the environment of low dimensional nanomaterials such as graphene, MoS2 and carbon nanotubes to preserve their intrinsic physical properties. Novel solutions for property enhancements are discussed in depth. In the first part, we fabricate state-of-the-art, edge-contacted, graphene Van der Waals(VdW) heterostructuredevices encapsulated in hexagonal-boron nitride(hBN), to obtain ballistic transport. We use a technique based on 1/f-noise measurements to probe bulk and edge transport during integer and fractional Quantum Hall regimes. In the second part, the same fabrication concept of VdW heterostructures has been extended to encapsulate monolayer MoS2 in hBN to improve optical properties. In this regard we present an extensive study about the origin and characterization of intrinsic and extrinsic defects and their affect on optical properties. Further, we describe a technique to probe the interlayer coupling along with the generation of light with spatialresolution below the diffraction limit of light. Finally, we discuss a natural systemic process to enhance the mechanical properties of natural polymer silk using HipCO-made single walled carbon nanotubes as a food for silkworm.
46

Narrow plasmon resonances in hybrid systems

Thomas, Philip January 2017 (has links)
Surface plasmons are collective oscillations of free electrons excited at a metal-dielectric interface by incident light. They possess a broad set of interesting properties including a high degree of tunability, the generation of strong field enhancements close to the metal's surface and high sensitivity to their adjacent dielectric environment. It is possible to enhance the sensitivity of plasmonic systems by using narrow plasmon resonances. In this thesis two approaches to narrowing surface plasmon resonances have been studied: diffraction coupling of localised surface plasmon resonances in gold nanoarrays and the use of graphene-protected copper thin films. Applications of these approaches in hybrid systems have been considered for modulation, waveguiding, biosensing and field enhancements. Arrays of gold nanostripes fabricated on a gold sublayer have been used to create extremely narrow plasmon resonances using diffraction coupling of localised plasmon resonances with quality factors up to a value of $Q \sim 300$, among the highest reported in the literature. The nanostructures were designed to give the narrowest resonance at the telecommunication wavelength of 1.5 µm, allowing for this array geometry to be used in hybrid systems for proof-of-concept optoelectronic devices. The gold nanostripe array was used in a hybrid nanomechanical electro-optical modulator along with hexagonal boron nitride (hBN) and graphene. The modulator was fabricated with an air gap between the nanoarray and the hexagonal boron nitride/graphene. Applying a gate voltage across the device moves the hBN towards the nanoarray, resulting in broadband modulation effects from the ultraviolet through to the mid-infrared dependant on the motion of the hBN instead of graphene gating. The deposition of a 400 nm hafnium(IV) oxide film on top of the gold nanoarray created a structure capable of guiding modes at 1.5 µm. The hybrid air-dielectric-stripe waveguide is capable of guiding modes over a distance of 250 µm. Copper thin films have stronger plasmon resonances and higher phase sensitivity than gold thin films. Transferring a graphene sheet on the copper prevents oxidation of the copper. A feasibility study of this hybrid system has shown that phase-sensitive graphene-protected copper biosensing can detect HT-2 mycotoxin with over four orders of magnitude greater sensitivity than commercially-available gold-based surface plasmon resonance biosensing systems. In summary, two methods of attaining narrow plasmon resonances have been demonstrated and their promise in modulation, waveguiding and biosensing have been demonstrated.
47

Formation and optical properties of mixed multi-layered heterostructures based on all two-dimensional materials

Sheng, Yuewen January 2017 (has links)
The production of large area, high quality two-dimensional (2D) materials using chemical vapour deposition (CVD) has been an important and difficult topic in contemporary materials science research, after the discovery of the diverse and extraordinary properties exhibited by these materials. This thesis mainly focuses on the CVD synthesis of two 2D materials; bilayer graphene and monolayer tungsten disulphide (WS2). Various factors influencing the growth of each material were studied in order to understand how they affect the quality, uniformity, and size of the 2D films produced. Following this, these materials were combined to fabricate 2D vertical heterostructures, which were then spectroscopically examined and characterised. By conducting ambient pressure CVD growth with a flat support, it was found that high uniform bilayer graphene could be grown on the centimetre scale. The flat support provides for the consistent delivery of precursor to the copper catalyst for graphene growth. These results provide important insights not only into the upscaling of CVD methods for growing large area, high quality graphene and but also in how to transfer the product onto flexible substrates for potential applications as a transparent conducting electrode. Monolayer WS2 is of interest for use in optoelectronic devices due to its direct bandgap and high photoluminescence (PL) intensity. This thesis shows how the controlled addition of hydrogen into the CVD growth of WS2 can lead to separately distributed domains or centimetre scale continuous monolayer films at ambient pressure without the need for seed molecules, specially prepared substrates or low pressure vacuum systems. This CVD reaction is simple and efficient, ideal for mass-production of large area monolayer WS2. Subsequent studies showed that hexagonal domains of monolayer WS2 can have discrete segmentation in their PL emission intensity, forming symmetric patterns with alternating bright and dark regions. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. These results provide important insights into the spatially varying properties of these CVD-grown TMDs materials, which may be important for their effective implementation in fast photo sensors and optical switches. Finally, by introducing a novel non-aqueous transfer method, it was possible to create vertical stacks of mixed 2D layers containing a strained monolayer of WS2, boron nitride, and graphene. Stronger interactions between WS2 on graphene was found when swapping water for IPA, likely resulting from reduced contamination between the layers associated with aqueous impurities. This transfer method is suitable for layer by layer control of 2D material vertical stacks and is shown to be possible for all CVD grown samples, a result which opens up pathways for the rapid large scale fabrication of vertical heterostructure systems with large area coverage and controllable thickness on the atomic level.
48

Scalable processing and integration of 2D materials and devices

Torres Alonso, Elías January 2018 (has links)
Due to its truly two dimensional (2D) character and its particular lattice, single layer graphene (SLG) possesses exceptional properties: it is semimetallic, transparent, strong yet flexible ... Complementary features such as the insulating character of hexagonal boron nitride (h-BN) and semiconducting properties of transition metal dichalcogenides (TMDs) enable the whole spectrum of electronic devices to be built with combinations of these 2D materials. Due to this and the ease of exfoliation with a sticky tape, a vast amount of research was sparked. The mechanical exfoliation method, however, is only suitable for novel or proof-of-concept devices. The trend nowadays in electronics is towards transparent, lightweight, flexible, embedded smart devices and sensors in everyday objects such as windows and mirrors, garments, windshields, car seats, parachutes...These demands are already met inherently by these new materials, thus the challenges remaining are within their synthesis, deposition and processing, where more scalable ways of production and device fabrication need to be developed. This thesis explores innovative approaches using established techniques that aim to bridge the gap between proof-of-concept devices and real applications of 2D materials in future commercial level technologies. Methods to create graphene and engineer its properties are employed with a special focus on scalability and adaptability towards the industry. These graphene materials have been processed using pioneering schemes to create different optoelectronic devices and sensors. The techniques employed here for synthesis, transfer and deposition, device processing and characterization of graphene and derivatives, are suitable for their use in large manufacturing and mass-production. Depending on the application envisaged, different materials are used and optimize in order to balance good performance, cost-effectiveness and suitability/scalability of the process for the specific target the device was designed for.
49

Electronic structure, defect formation and passivation of 2D materials

Lu, Haichang January 2019 (has links)
The emerging 2D materials are potential solutions to the scaling of electronic devices to smaller sizes with lower energy cost and faster computing speed. Unlike traditional semiconductors e.g. Si, Ge, 2D materials do not have surface dangling bonds and the short-channel effect. A wide variety of band structure is available for different functions. The aim of the thesis is to calculate the electronic structures of several important 2D materials and study their application in particular devices, using density functional theory (DFT) which provides robust results. The Schottky barrier height (SBH) is calculated for hexagonal nitrides. The SBH has a linear relationship with metal work function but the slope does not always equal because Fermi level pinning (FLP) arises. The chemical trend of FLP is investigated. Then we show that the pinning factor of Si can be tuned by inserting an oxide interlayer, which is important in the application to dopant-free Si solar cells. Apart from contact resistance, we want to improve the conductivity of the electrode. This can be done by using a physisorbed contact layer like FeCl3, AuCl3, and SbF5 etc. to dope the graphene without making the graphene pucker so these dopants do not degrade the graphene's carrier mobility. Then we consider the defect formation of 2D HfS2 and SnS2 which are candidates in the n-type part of a tunnel FET. We found that these two materials have high mobility but there are also intrinsic defects including the S vacancy, S interstitial, and Hf/Sn interstitial. Finally, we study how to make defect states chemically inactive, namely passivation. The S vacancy is the most important defect in mechanically exfoliated 2D MoS2. We found that in the most successful superacid bis(trifluoromethane) sulfonamide (TFSI) treatment, H is the passivation agent. A symmetric adsorption geometry of 3H in the -1 charge state can remove all gap states and return the Fermi level to the midgap.
50

Synthesis and Characterization of 2D and 3D Metal Organic Frameworks

January 2019 (has links)
abstract: Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation of the formation process of MOF membrane, framework defects, and two-dimensional (2D) MOFs, aiming to explore the answers for three critical questions: (1) how to obtain a continuous MOF membrane, (2) how defects form in MOF framework, and (3) how to obtain isolated 2D MOFs. To solve the first problem, the accumulated protons in the MOF synthesis solution is proposed to be the key factor preventing the continuous growth among Universitetet I Oslo-(UiO)-66 crystals. The hypothesis is verified by the growth reactivation under the addition of deprotonating agent. As long as the protons were sufficiently coordinated by the deprotonating agent, the continuous growth of UiO-66 is guaranteed. Moreover, the modulation effect can impact the coordination equilibrium so that an oriented growth of UiO-66 film was achieved in membrane structures. To find the answer for the second problem, the defect formation mechanism in UiO-66 was investigated and the formation of missing-cluster (MC) defects is attributed to the partially-deprotonated ligands. Experimental results show the number of MC defects is sensitive to the addition of deprotonating agent, synthesis temperature, and reactant concentration. Pore size distribution allows an accurate and convenient characterization of the defects. Results show that these defects can cause significant deviations of its pore size distribution from the perfect crystal. The study of the third questions is based on the established bi-phase synthesis method, a facile synthesis method is adopted for the production of high quality 2D MOFs in large scale. Here, pyridine is used as capping reagent to prevent the interplanar hydrogen bond formation. Meanwhile, formic acid and triethylamine as modulator and deprotonating agent to balance the anisotropic growth, crystallinity, and yield in the 2D MOF synthesis. As a result, high quality 2D zinc-terephthalic acid (ZnBDC) and copper-terephthalic acid (CuBDC) with extraordinary aspect ratio samples were successfully synthesized. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2019

Page generated in 0.0866 seconds