81 |
Gated Quantum Structures in Two-Dimensional SemiconductorsBoddison-Chouinard, Justin 08 December 2022 (has links)
The family of semiconducting 2H-phase group-VI transition metal dichalcogenides (TMDs) have been suggested to be promising candidates for hosting optically accessible spin qubits due to their desirable optical and electrical properties, however, experimental progress towards this goal has been impeded by the difficulties associated with the fabrication of clean structures with quality contacts. In this thesis, we present the complex process for obtaining functional contacts to two particular TMDs, molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), from which we use as the foundation for the fabrication of three important gate defined quantum structures: quantum dots, a charge detector, and a long 1D channel. These structures all play an important role in furthering the understanding of these materials and are the building blocks for achieving functional spin qubits. More precisely, we investigate the contact resistances associated with various cleaning procedures
and contact architectures and report a recipe that results in an ultra-low contact
resistance even at cryogenic temperatures. We then demonstrate electrical control of hole quantum dots, the host of the spin qubit, in gated heterostructure devices based on monolayer WSe2 and study its properties. With a similar structure, we demonstrate that a
gate-defined nano-constriction is sensitive to the charge occupation of a nearby quantum dot and is therefore suitable to be used as a charge sensor, a valuable component of elaborate quantum circuits. Finally, we demonstrate the realization of a gate-defined quantum confined 1D channel in a high mobility monolayer WSe2 sample and observe an anomalous
conductance quantization in units of e2/h. These results pave the way for the development of quantum devices based on electrostatically confined quantum dots defined in semiconducting TMDs and push forward our understanding of their electronic properties.
|
82 |
Investigation into the Semiconducting and Device Properties of MoTe2 and MoS2 Ultra-Thin 2D MaterialsSirota, Benjamin 05 1900 (has links)
The push for electronic devices on smaller and smaller scales has driven research in the direction of transition metal dichalcogenides (TMD) as new ultra-thin semiconducting materials. These ‘two-dimensional' (2D) materials are typically on the order of a few nanometers in thickness with a minimum all the way down to monolayer. These materials have several layer-dependent properties such as a transition to direct band gap at single-layer. In addition, their lack of dangling bonding and remarkable response to electric fields makes them promising candidates for future electronic devices. For the purposes of this work, two 2D TMDs were studied, MoS2 and MoTe2. This dissertation comprises of three sections, which report on exploration of charge lifetimes, investigation environmental stability at elevated temperatures in air, and establishing feasibility of UV laser annealing for large area processing of 2D TMDs, providing a necessary knowledge needed for practical use of these 2D TMDs in optoelectronic and electronic devices.
(1) A study investigating the layer-dependence on the lifetime of photo-generated electrons in exfoliated 2D MoTe2 was performed. The photo-generated lifetimes of excited electrons were found to be strongly surface dependent, implying recombination events are dominated by Shockley-Read-Hall effects (SRH). Given this, the measured lifetime was shown to increase with the thickness of exfoliated MoTe¬2; in agreement with SRH recombination. Lifetimes were also measured with an applied potential bias and demonstrated to exhibit a unique voltage dependence. Shockley-Read-Hall recombination effects, driven by surface states were attributed to this result. The applied electric field was also shown to control the surface recombination velocity, which lead to an unexpected rise and fall of measured lifetimes as the potential bias was increased from 0 to 0.5 volts.
(2) An investigation into the environmental stability of exfoliated 2D MoTe2 was conducted using a passivation layer of amorphous boron nitride as a capping layer for back-gated MoTe2 field effect transistor (FET) devices. A systematic approach was taken to understand the effects of heat treatment in air on the performance of FET devices. Atmospheric oxygen was shown to negatively affect uncoated MoTe2 devices while BN-covered FETs showed remarkable chemical and electronic characteristic stability. Uncapped MoTe2 FET devices, which were heated in air for one minute, showed a polarity switch from n- to p-type at 150 °C, while BN-MoTe2 devices switched only after 200 °C of heat treatment. Time-dependent experiments at 100 °C showed that uncapped MoTe2 samples exhibited the polarity switch after 15 min of heat treatment while the BN-capped device maintained its n-type conductivity. X-ray photoelectron spectroscopy (XPS) analysis suggests that oxygen incorporation into MoTe2 was the primary doping mechanism for the polarity switch.
(3) The feasibility of UV laser annealing as a post-process technique to sinter 2D crystal structures from sputtered amorphous MoS2 was explored. Highly crystalline materials are sought after for their use in electron and opto-electronic devices. Sputtered MoS2 has the advantage of potential for large area deposition and high scalability, however, it requires high temperatures (>350 °C) for their crystalline growth. Which creates difficulty for devices grown on polymer substrates. Low-temperature and room temperature deposition results in amorphous films which is detrimental for electric devices. A one-step lase annealing procedure was developed to provide amorphous to crystalline conversion of nanometer thin MoS2 films. Samples were annealed using an unfocused laser beam from a KrF (248 nm) excimer source. The power density was found to be 1.04 mJ/mm2. Raman analysis of laser annealed MoS2 was shown to exhibit a significant improvement of the 2D MoS2 crystallinity compared to as-deposited films on both SiO2/Si, as well as polydimethylsiloxane (PDMS) substrates. Annealed samples showed improvement of their conductivity on an order of magnitude. A top-gated FET device was fabricated on flexible PDMS substrates using Al2O3 as a gate oxide. Measured field effect mobility of annealed samples showed significant improvement over as-deposited devices.
|
83 |
Use and Application of 2D Layered Materials-Based Memristors for Neuromorphic ComputingAlharbi, Osamah 01 February 2023 (has links)
This work presents a step forward in the use of 2D layered materials (2DLM),
specifically hexagonal boron nitride (h-BN), for the fabrication of memristors.
In this study, we fabricate, characterize, and use h-BN based memristors with
Ag/few-layer h-BN/Ag structure to implement a fully functioning artificial leaky
integrate-and-fire neuron on hardware. The devices showed volatile resistive
switching behavior with no electro-forming process required, with relatively low
VSET and long endurance of beyond 1.5 million cycles. In addition, we present
some of the failure mechanisms in these devices with some statistical analyses to
understand the causes, as well as a statistical study of both cycle-to-cycle and
device-to-device variabilities in 20 devices.
Moreover, we study the use of these devices in implementing a functioning
artificial leaky integrate-and-fire neuron similar to a biological neuron in the brain.
We provide SPICE simulation as well as hardware implementation of the artificial
neuron that are in full agreement, showing that our device could be used for such
application. Additionally, we study the use of these devices as an activation
function for spiking neural networks (SNNs) by providing a SPICE simulation of
a fully trained network, where the artificial spiking neuron is connected to the
output terminal of a crossbar array. The SPICE simulations provide a proof of
concept for using h-BN based memristor for activation function for SNNs.
|
84 |
Spectroscopic investigations of two-dimensional magnetic materials: transition metal trichlorides and transition metal phosphorus trichalcogenidesKlaproth, Tom 10 July 2023 (has links)
In this thesis, the electronic properties of two-dimensional magnetic materials, transition metal trichlorides and transition metal phosphorus trichalcogenides, are studied by means of various spectroscopic techniques including photoelectron spectroscopy (PES), electron energy-loss spectroscopy (EELS) and optical spectroscopy. The experiments on transition metal trichlorides mainly focus on manipulating the electronic structure of α−RuCl3 — a Kitaev spin liquid candidate material that, however, hosts an antiferromagnetic ground state at temperatures below 7 K. Such manipulation attempts include transition metal substitution by Cr, Ar+ sputtering of exfoliated flakes and the creation of an interface of α−RuCl3 with the organic semiconductor manganese (II) phtalocyanine (MnPc).
To study the influence of transition metal substitution by Cr, the parent compounds α−RuCl3 and CrCl3, and the mixed compound Cr0.5Ru0.5Cl3 were studied by PES and EELS. The mixed compound preserves the +III oxidation state of Cr and Ru. The valence band resembles a superposition of the parent compounds and EELS reveals the appearance of a new optical absorption channel assigned to a Cr-Ru charge transfer.
Ar+ sputtering decreases the chlorine content of exfoliated α−RuCl3 flakes. However, the properties of the sputtered film, namely the rate of chlorine loss and the work function, depend heavily on the initial flake thickness. The work function spans a remarkable range from Φ = 4.6 eV to 6.1 eV.
The interface of α−RuCl3 with MnPc demonstrates the potential of α−RuCl3 as a strong electron acceptor. The work function and electron affinity of α−RuCl3 are characterized and the charge transfer from MnPc to α−RuCl3 is experimentally verified.
In the second part of the thesis, two transition metal phosphorus trichalcogenide compounds are studied: FePS3 and NiPS3. Both are antiferromagnetic materials with FePS3 being of Ising-type and NiPS3 of anisotropic Heisenberg-type. Their electronic structure is spectroscopically investigated and the results are used as input for advanced density functional theory calculations (DFT+U) characterizing FePS3 as a Mott insulator and NiPS3 as a charge-transfer insulator. In the magnetically ordered state, magnetism and electronic properties are intertwined with the giant linear dichroism (LD) of FePS3 measured in optical transmission being the most impressive example. A microscopic understanding of the LD is provided with the DFT+U results giving confidence to the described model. For NiPS3, the origin of an extremely sharp magnetic exciton is studied bearing some analogy to the famous Zhang-Rice singlet state initially proposed for cuprates.:Contents iii
List of Figures v
Acronyms ix
1. Introduction 1
2. Experimental Techniques 3
2.1. Photoelectron Spectroscopy (PES) . . . . . . . . . . . . . . . . . . . 3
2.2. Three-step-model of Photoemission . . . . . . . . . . . . . . . . . . . 4
2.2.1. Photoabsorption . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2. Propagation to the Surface . . . . . . . . . . . . . . . . . . . 6
2.2.3. Escape into the Vacuum . . . . . . . . . . . . . . . . . . . . . 7
2.3. Spectral Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Energy-filtered Photoemission Electron Microscopy (PEEM) . . . . . 9
2.5. Background Signal of XPS and UPS Measurements . . . . . . . . . . 9
2.6. Electron Energy-loss Spectroscopy (EELS) . . . . . . . . . . . . . . . 10
2.6.1. EELS Cross Section . . . . . . . . . . . . . . . . . . . . . . . 12
2.7. The Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.1. The Drude-Lorentz-model . . . . . . . . . . . . . . . . . . . . 16
2.7.2. Related functions . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.3. Kramers-Kronig relations . . . . . . . . . . . . . . . . . . . . 19
2.8. Optical Microscopy and Spectroscopy . . . . . . . . . . . . . . . . . . 20
2.8.1. Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8.2. Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.3. Optical Contrast of Thin Films . . . . . . . . . . . . . . . . . 22
2.9. Core Level Spectroscopy of Solids . . . . . . . . . . . . . . . . . . . . 25
2.9.1. Spin-orbit Splitting and Notation . . . . . . . . . . . . . . . . 25
2.9.2. Core Level Spectroscopies: XPS and EELS/XAS . . . . . . . 26
2.9.3. Multiplet and Charge Transfer Effects . . . . . . . . . . . . . 26
2.10. Atomic Force Microscopy (AFM) . . . . . . . . . . . . . . . . . . . . 29
2.11. Details on Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11.1. nanoARPES . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11.2. nanoESCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11.3. Transmission EELS . . . . . . . . . . . . . . . . . . . . . . . . 37
3. Manipulating the Electronic Structure of α−RuCl3 41
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2. Tuning the Electronic Structure of the Trichlorine Honeycomb Lattice
by Transition Metal Substitution: α−RuCl3, Cr0.5Ru0.5Cl3, CrCl3 . 47
3.2.1. Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 49
3.2.3. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4. EELS Results in the Low Energy Region . . . . . . . . . . . . 52
3.2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3. Work Function Engineering of Atomically Thin α−RuCl3 by Arsputtering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1. Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2. Work Function . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.4. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.5. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 64
3.4. Charge Transfer at the α−RuCl3/MnPc Interface . . . . . . . . . . . 66
3.4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 73
4. Spectroscopic Investigation of NiPS3 and FePS3 75
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1. Crystal Structure and Magnetic Properties . . . . . . . . . . 76
4.1.2. Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . 79
4.2. FePS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.4. EELS Results in the Energy Region between 4 eV and 80 eV . 87
4.2.5. EELS Results in the Low Energy Region . . . . . . . . . . . . 88
4.2.6. Optical Spectroscopy and Linear Dichroism (LD) . . . . . . . 89
4.2.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 92
4.3. NiPS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 98
4.3.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.4. EELS Results in the Energy Region between 4 eV and 70 eV . 102
4.3.5. EELS in the Low Energy Region . . . . . . . . . . . . . . . . 103
4.3.6. Multiplet theory and RIXS . . . . . . . . . . . . . . . . . . . 105
4.3.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 107
5. Summary and Outlook 109
A. Appendix 111
A.1. The Pseudo-Voigt Profile . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2. Calculation of Reciprocal Lattice Vectors . . . . . . . . . . . . . . . . 111
Bibliography 113 / In dieser Arbeit wurden die elektronischen Eigenschaften von zweidimensionalen magnetischen Materialien, Übergangsmetall-Trichloriden und Übergangsmetall-Phosphor-Trichalkogeniden, untersucht. Dabei kamen verschiedene Spektroskopie-Techniken zum Einsatz: Photoelektronenspektroskopie (PES), Elektronen-Energieverlust-Spektroskopie (EELS) und optische Spektroskopie. Die Experimente an Übergangsmetall-Trichloriden zielen hauptsächlich auf die Manipulation der elektronischen Eigenschaften von α−RuCl3 ab. α−RuCl3 ist ein Kandidat für eine Kitaev Quantenspinflüssigkeit, das jedoch bei tiefen Temperaturen unter 7K einen antiferromagnetischen Grundzustand besitzt. Die Manipulationsversuche beinhalten die Substitution des Übergangsmetalls durch Cr, Ar+ sputtern von exfolierten Kristallflocken und die Erzeugung einer Grenzfläche zwischen α−RuCl3 und dem organischen Halbleiter Mangan (II) Phthalocyanin (MnPc).
Um den Einfluss der Substitution des Übergangsmetalls durch Cr zu untersuchen, wurden die Ausgangsverbindungen α−RuCl3 und CrCl3, und die gemischte Verbindung Cr0.5Ru0.5Cl3 mittels PES und EELS untersucht. In der gemischten Verbindung liegen Cr und Ru weiterhin mit Oxidationszahl +III vor. Das Valenzband lässt sich als Überlagung der Ausgangsverbindungen darstellen und EELS Daten zeigen einen neuen optischen Absorptionskanal durch Ladungstransfer von Cr zu Ru.
Ar+ sputtern reduziert den Chloranteil von exfolierten α−RuCl3-Flocken. Die Eigenschaften der gesputterten Filme, insbesondere Austrittsarbeit und Chlorverlust, hängen jedoch stark von der ursprünglichen Dicke der exfolierten Flocke ab. Die Austrittsarbeit zeigt eine beachtliche Spanne von Φ = 4.6 eV bis 6.1 eV. Die Grenzfläche von α−RuCl3 mit MnPc demonstriert das Potential von α−RuCl3 als starken Elektronenakzeptor. Die Austrittsarbeit und die Elektronenaffinität von α−RuCl3 wurden charakterisiert und der Ladungstransfer von MnPc zu α−RuCl3 wurde experimentell bestätigt.
Im zweiten Teil der Arbeit werden zwei Vertreter der Übergangsmetall-Phosphor-Trichalkogeniden untersucht: FePS3 und NiPS3. Beide Materialien sind antiferromagnetisch, wobei FePS3 dem Ising-Typ entspricht und NiPS3 einem anisotropen Heisenberg-Modell. Die elektronische Struktur der beiden Materialien wurde durch spektroskopische Methoden untersucht und als Grundlage für DFT+U Rechnungen verwendet, wodurch FePS3 als Mott-Isolator und NiPS3 als Ladungstransfer-Isolator charakterisiert wurden. Im magnetisch geordneten Zustand sind elektronische und magnetische Eigenschaften verflochten, das sich am eindrucksvollsten im großen linearen dichroismus (LD) Effekt von FePS3 gemessen in optischer Transmission zeigt. Ein mikroskopisches Modell zur Erklärung des LD wird beschrieben und durch Ergebnisse aus DFT+U Rechnungen unterlegt. Bei NiPS3 wurde die Ursache für ein energetisch extrem scharfes, magnetisches Exziton untersucht, das Analogien zum bekannten Zhang-Rice-Singulett aufweist, welches ursprünglich für Kuprate vorgeschlagen wurde.:Contents iii
List of Figures v
Acronyms ix
1. Introduction 1
2. Experimental Techniques 3
2.1. Photoelectron Spectroscopy (PES) . . . . . . . . . . . . . . . . . . . 3
2.2. Three-step-model of Photoemission . . . . . . . . . . . . . . . . . . . 4
2.2.1. Photoabsorption . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2. Propagation to the Surface . . . . . . . . . . . . . . . . . . . 6
2.2.3. Escape into the Vacuum . . . . . . . . . . . . . . . . . . . . . 7
2.3. Spectral Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Energy-filtered Photoemission Electron Microscopy (PEEM) . . . . . 9
2.5. Background Signal of XPS and UPS Measurements . . . . . . . . . . 9
2.6. Electron Energy-loss Spectroscopy (EELS) . . . . . . . . . . . . . . . 10
2.6.1. EELS Cross Section . . . . . . . . . . . . . . . . . . . . . . . 12
2.7. The Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.1. The Drude-Lorentz-model . . . . . . . . . . . . . . . . . . . . 16
2.7.2. Related functions . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.3. Kramers-Kronig relations . . . . . . . . . . . . . . . . . . . . 19
2.8. Optical Microscopy and Spectroscopy . . . . . . . . . . . . . . . . . . 20
2.8.1. Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8.2. Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.3. Optical Contrast of Thin Films . . . . . . . . . . . . . . . . . 22
2.9. Core Level Spectroscopy of Solids . . . . . . . . . . . . . . . . . . . . 25
2.9.1. Spin-orbit Splitting and Notation . . . . . . . . . . . . . . . . 25
2.9.2. Core Level Spectroscopies: XPS and EELS/XAS . . . . . . . 26
2.9.3. Multiplet and Charge Transfer Effects . . . . . . . . . . . . . 26
2.10. Atomic Force Microscopy (AFM) . . . . . . . . . . . . . . . . . . . . 29
2.11. Details on Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11.1. nanoARPES . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11.2. nanoESCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11.3. Transmission EELS . . . . . . . . . . . . . . . . . . . . . . . . 37
3. Manipulating the Electronic Structure of α−RuCl3 41
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2. Tuning the Electronic Structure of the Trichlorine Honeycomb Lattice
by Transition Metal Substitution: α−RuCl3, Cr0.5Ru0.5Cl3, CrCl3 . 47
3.2.1. Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 49
3.2.3. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4. EELS Results in the Low Energy Region . . . . . . . . . . . . 52
3.2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3. Work Function Engineering of Atomically Thin α−RuCl3 by Arsputtering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1. Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2. Work Function . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.4. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.5. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 64
3.4. Charge Transfer at the α−RuCl3/MnPc Interface . . . . . . . . . . . 66
3.4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 73
4. Spectroscopic Investigation of NiPS3 and FePS3 75
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1. Crystal Structure and Magnetic Properties . . . . . . . . . . 76
4.1.2. Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . 79
4.2. FePS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.4. EELS Results in the Energy Region between 4 eV and 80 eV . 87
4.2.5. EELS Results in the Low Energy Region . . . . . . . . . . . . 88
4.2.6. Optical Spectroscopy and Linear Dichroism (LD) . . . . . . . 89
4.2.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 92
4.3. NiPS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 98
4.3.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.4. EELS Results in the Energy Region between 4 eV and 70 eV . 102
4.3.5. EELS in the Low Energy Region . . . . . . . . . . . . . . . . 103
4.3.6. Multiplet theory and RIXS . . . . . . . . . . . . . . . . . . . 105
4.3.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 107
5. Summary and Outlook 109
A. Appendix 111
A.1. The Pseudo-Voigt Profile . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2. Calculation of Reciprocal Lattice Vectors . . . . . . . . . . . . . . . . 111
Bibliography 113
|
85 |
Opto-Electronic Properties of Self-Contacted MoS2 Monolayer DevicesThorat, Ruhi P. January 2017 (has links)
No description available.
|
86 |
Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet PrintingMayersky, Joshua 21 September 2018 (has links)
No description available.
|
87 |
Growth and Characterization of Molybdenum Disulfide Thin FilmsGross, Carl Morris, III 07 June 2016 (has links)
No description available.
|
88 |
Synthesis and Characterization of Novel Two-Dimensional MaterialsYoung, Justin R. 21 December 2016 (has links)
No description available.
|
89 |
Nonlinear Optical Properties of Traditional and Novel MaterialsKrupa, Sean J. 21 September 2016 (has links)
No description available.
|
90 |
Optically Transduced Two-Dimensional (2D) Resonant Nanoelectromechanical Systems and Their Emerging ApplicationsLee, Jaesung 08 February 2017 (has links)
No description available.
|
Page generated in 0.0741 seconds