• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local Conformations and Excited State Dynamics of Porphyrins and Nucleic Acids by 2-Dimensional Fluorescence Spectroscopy

Widom, Julia 17 June 2014 (has links)
Biological systems present many challenges to researchers attempting to study them using spectroscopy. Low specificity, low sensitivity, and broad and overlapping lineshapes limit the amount of information that can be obtained in experiments. Two-dimensional fluorescence spectroscopy (2D FS) is a highly sensitive and information-rich spectroscopic technique that was developed to study the conformations and excited state dynamics of systems exhibiting exciton coupling. In this dissertation, I describe a variety of extensions of 2D FS that further increase its utility for the study of biological systems. I describe experiments on a dimer of zinc tetraphenylporphyrin embedded in a membrane, in which the signals from two conformational subpopulations were separated in order to study the thermodynamics of their interconversion. I present proof-of-principle experiments on nucleic acids that utilize fluorescence resonance energy transfer to separate signals from different subpopulations. I also describe experiments in which 2D FS was performed using ultraviolet excitation to determine the conformation of a dinucleotide of a fluorescent analogue of the nucleic acid base adenine. I discuss experiments on porphyrin dimers in which 2D FS was used as a probe of excited state dynamics. Finally, I present model calculations for a proposed variation of 2D FS in which entangled photons would be used as the excitation source. These calculations suggest that this approach has the potential to yield significantly narrower spectral lineshapes than conventional 2D FS. These experiments and calculations yield new insight into the systems investigated and establish a `toolbox' of variations of 2D FS that can be used to gain as much information as possible from experiments on challenging systems such as protein-DNA complexes. This dissertation contains previously published and unpublished co-authored material.
2

Investigation of Coherence and its Decay Mechanisms in an Optical Lattice

Maneshi, Samansa 09 June 2011 (has links)
In this thesis, I report on experiments with cold 85Rb atoms in a far-detuned one-dimensional optical lattice. These experiments are focused on creating efficient coupling between the quantized vibrational states of atoms in the optical lattice, on controlling and maintaining coherence between the vibrational states, and on developing a spectroscopy method to characterize the decay of coherence. First, I present an experimental study of the application of simple and compound pulses consisting of time-dependent spatial translations to coupling vibrational states of ultracold 85Rb atoms in the optical lattice. Experimental results show that a square pulse consisting of lattice displacements and a delay is more efficient than single-step and Gaussian pulses. The square pulse can be seen as an example of coherent control. Numerical calculations are in strong agreement with the experimental results. In addition, it is shown numerically that the vibrational state coupling due to such lattice manipulations is more efficient in shallow lattices than in deep lattices, in which the coupling probability approaches the harmonic oscillator limit. Next, the effectiveness of these pulses in reviving oscillations of atoms in vibrational superposition states using a pulse-echo technique is examined. Experimental results show that the square and Gaussian pulses result in higher echo amplitudes than the single-step pulse. These echo amplitudes are an order of magnitude larger than the echo amplitudes observed previously for the motional states of atoms in optical lattices. With the aim of the optimized square echo pulse, echo amplitude is measured at much longer times, where a surprising coherence freeze (plateau) is observed. To investigate mechanisms responsible for the observed echo decay and the coherence freeze, we developed a new two-dimensional pump-probe spectroscopy technique to monitor the evolution of frequency-frequency correlations in the system, a necessary input for understanding the decay of coherence. Through this 2D technique, we have characterized the temporal decay of frequency memory and through our simulations we find that coherence freeze is related to the shape of this memory loss function. This technique is general in that it can be applied in a variety of quantum information candidate systems to probe the nature of their decoherence.
3

Investigation of Coherence and its Decay Mechanisms in an Optical Lattice

Maneshi, Samansa 09 June 2011 (has links)
In this thesis, I report on experiments with cold 85Rb atoms in a far-detuned one-dimensional optical lattice. These experiments are focused on creating efficient coupling between the quantized vibrational states of atoms in the optical lattice, on controlling and maintaining coherence between the vibrational states, and on developing a spectroscopy method to characterize the decay of coherence. First, I present an experimental study of the application of simple and compound pulses consisting of time-dependent spatial translations to coupling vibrational states of ultracold 85Rb atoms in the optical lattice. Experimental results show that a square pulse consisting of lattice displacements and a delay is more efficient than single-step and Gaussian pulses. The square pulse can be seen as an example of coherent control. Numerical calculations are in strong agreement with the experimental results. In addition, it is shown numerically that the vibrational state coupling due to such lattice manipulations is more efficient in shallow lattices than in deep lattices, in which the coupling probability approaches the harmonic oscillator limit. Next, the effectiveness of these pulses in reviving oscillations of atoms in vibrational superposition states using a pulse-echo technique is examined. Experimental results show that the square and Gaussian pulses result in higher echo amplitudes than the single-step pulse. These echo amplitudes are an order of magnitude larger than the echo amplitudes observed previously for the motional states of atoms in optical lattices. With the aim of the optimized square echo pulse, echo amplitude is measured at much longer times, where a surprising coherence freeze (plateau) is observed. To investigate mechanisms responsible for the observed echo decay and the coherence freeze, we developed a new two-dimensional pump-probe spectroscopy technique to monitor the evolution of frequency-frequency correlations in the system, a necessary input for understanding the decay of coherence. Through this 2D technique, we have characterized the temporal decay of frequency memory and through our simulations we find that coherence freeze is related to the shape of this memory loss function. This technique is general in that it can be applied in a variety of quantum information candidate systems to probe the nature of their decoherence.
4

Nelineární optická spektroskopie molekulárních komplexů / Nelineární optická spektroskopie molekulárních komplexů

Linhart, Jan January 2011 (has links)
Práce se zabývá teorií nelineární spektroskopie a projevy kvantové koherentní dynamiky v nelineární spektroskopii. Poskytuje stručný přehled spektroskopických metod se zaměřením na metodu pump-probe. Dále rozví- jíme teorii nelineární odezvy, přičemž vycházíme z obecného N-wave mixing experimentu, a dospíváme ke tvaru odezvové funkce třetího řádu vyjádřené pomocí Liouvillových drah. Pro vybrané modelové systémy sledujeme koher- entní efekty, které se projevují v 2D a pump-probe spektrech, a provádíme jejich porovnání. D·raz je kladen na objasnění jev· relaxace a excitonové koherence mezi dvěma excitovanými stavy molekulárního dimeru. 1
5

Odraz vibronické modulace ve dvoudimenzionálních elektronických spektrech malých molekulárních agregátů / Signatures of vibronic modulation of small molecular aggregates in two-dimensional electronic spectra

Perlík, Václav January 2019 (has links)
We studied the effects of underdamped vibrational modes on excitonic energy transfer in small molecular aggregates by means of ultrafast nonlinear spectroscopy. We developed a vibronic dynamical model to account for the interplay of electronic and vibrational coherence during excitation transport. Our model was aimed to simulate signals of a broad class of linear and third order spectroscopies (absorption, fluorescence, transient absorption (TA), transient grating (TG), two-dimensional spectroscopy (2D)) in the visible domain andaccounts for anharmonic vibrations, sub-exponential relaxation and nonlinear electron-vibrational coupling. We subsequently applied the model for several case studies, such as carotenoid to bacteriochlorophyll excitation transfer in light-harvesting 2 complex (LH2) of purple bacteria, excitation transfer in perylene dyads or vibrational dynamics in hypericin. We have paid particular attention for detailed interpretation of lineshapes of 2D spectrograms employing, e.g. phase analysis and center line (CL) slopes with emphasis to study interplay of electronic, vibrational modulations, or finite excitation pulse durations.
6

Nonlinear terahertz spectroscopy in one and two dimensions

Kühn, Wilhelm 25 February 2011 (has links)
Die vorliegende Dissertation behandelt Grundlagen und Anwendungen der nichtlinearen Terahertzspektrospie (THz). Diese Arbeit zeigt erstmalig, dass sich die Inversion des Quantenkaskadenlasers nach einer Störung schon innerhalb von hundert Femtosekunden wieder erholt. Außerdem wurde der exakte Generationsprozess von THz Impulsen in einem Laser-induzierten zwei-Farben Plasma untersucht. Durch Vergleich mit Simulationen wird eindeutig der Ionisationsstrom im Plasma als Quelle der THz Strahlung identifiziert. Neue Spektroskopiemethoden in ein und zwei Zeitdimensionen werden entwickelt und auf verschiedene Halbleiterstrukturen angewendet. So wird das elektrische Feld des THz-Impulses für Hochfeld-Transportexperimente genutzt. Im quanten-kinetischen Regime entkoppelt die Elektronbewegung von den Phononmoden des Kristalls, und quasi-ballistischer Transport wird möglich. Wir entwickeln ein dynamisches Polaronmodell, welches sowohl die experimentellen Ergebnisse auf kurzen Zeitskalen als auch Literaturwerte auf langen Zeitskalen zuverlässig reproduziert. Bei niedrigen Temperaturen von 80 K tritt zusätzlich THz-induziertes Interbandtunneln in GaAs auf. Die temperaturabhängige Tunnelrate hängt dabei wesentlich von der Dekohärenzrate des induzierten Prozesses ab. Desweiteren wird eine kollineare 2D THz Spektroskopiemethode entwickelt und erstmals an Quantentrogstrukturen angewendet. Eine komplizierte, nichtkollineare Strahlgeometrie ist prinzipiell nicht notwendig. Die eingeführten Frequenzvektoren erklären das zugrundeliegende N-Wellen Mischen analog zum Raum auch in der Zeit. So werden mit einer kollinearen Strahlgeometrie alle nichtlinearen Signale simultan gemessen werden. Mit diesem Konzept wurden Rabi-Oszillationen an Intersubbandübergängen in Signale verschiedener nichtlinearer Ordnung zerlegt. Die ersten 2D Korrelationsspektren im THz-Bereich demonstrieren die energetischen Kopplungen zwischen verschiedenen polaronischen Zuständen in einer Doppel-Quantentrogstruktur. / The presented thesis concerns fundamentals and applications of nonlinear terahertz (THz) spectroscopy. It is demonstrates that the a gain recovery time of a quantum cascade laser (QCL) amounts only to several hundred femtoseconds. We explored the generation process of THz pulses within a laser-induced two-color plasma and identified the ionisation current as the origin of the THz radiation. Novel methods of THz spectroscopy in one and in two dimensions are developed and applied to different semiconductor heterostructures. We use the electric field of THz pulses for high-field transport experiments. Within this quantum-kinetic regime, the electron velocity decouples from phonon modes of the crystal lattice and quasi-ballistic transport becomes feasible during the first hundreds of femtoseconds. We develop a dynamic polaron model, which reproduces the experimental results on short time scales as well as the published values on long time scales. At low temperatures of 80 K, we find additional THz-induced interband tunneling in GaAs. The temperature dependent tunneling rate depends essentially on the decoherence time of the induced process. Furthermore, a novel method of collinear 2D THz spectroscopy is developed and applied to quantum well structures. Frequency vectors are introduced to explain the underlying process of N-wave mixing not in space, but in time. This allows for a collinear beam geometry to measure all nonlinear signals simultaneously. We used this new method to decompose Rabi oscillations on intersubband transitions into nonlinear signals of different order. The first 2D correlation spectra in the THz frequency range demonstrate energetic couplings between polaronic states within an asymmetric double quantum well structure. Another experiment displays for the first time the 2D correlation spectrum of a 2pi Rabi flop on the intersubband transition of a multiple quantum well structure.

Page generated in 0.0419 seconds