1 |
First-principles Investigation of Small Polarons in Metal OxidesKokott, Sebastian 13 November 2018 (has links)
Ein limitierender Faktor der Leitfähigkeit ist die Wechselwirkung der Ladungsträger mit polaren Phononenmoden; das resultierende Quasiteilchen wird als Polaron bezeichnet. Die Stärke der Elektron-Phonon (el-ph)-Wechselwirkung bestimmt die Stärke der Lokalisierung des Polarons, die z.B. die Charakteristik der Temperaturabhängigkeit der Mobliltät definiert. Wir fokussieren uns auf Metalloxide mit starker (el-ph)-Kopplung, bei der sich kleine Polaronen bilden.
Die Dichtefunktionaltheorie wird häufig für zur Simulation von Polaronen verwendet. Jedoch treten hierbei zwei Schwierigkeiten auf: Die Sensitivität der berechneten Eigenschaften in Abhängigkeit der Fehler im Austausch-Korrelations (XC)-Funktional und der Effekt der endlichen Superzellgröße. Beide Probleme werden in dieser Arbeit untersucht. Die Polaroneneigenschaften werden auf einer modifizierten Potentialoberfläche (PES) berechnet. Durch Variierung des Anteils der exakten Austauschenergie im hybriden HSE-Funktional zeigen wir, dass das modifizierte PES-Modell deutlich die Abhängigkeit der Polaroneneigenschaften vom XC-Funktional reduziert. Basierend auf dem Potential der el-ph-Kopplung von Pekar leiten wir das korrekte elastische langreichweitige Verhalten des Polarons und darauf aufbauend eine Korrektur für den Fehler durch die endliche Superzellgröße her. Diese Erkenntnisse werden durch ausgiebige Tests an MgO und Rutil TiO2 überprüft.
Die oben beschriebene Methode wird zur Untersuchung des Einflusses der Kristallstruktur auf die Bildung von Polaronen in Rutil und Anatas TiO2 und in der β- und κ-Phase von Ga2O3 angewendet. Während in Rutil nur kleine Elektronpolaronen stabil sind, finden wir in Anatas nur stabile Lochpolaronen. Hingegen existieren in beiden Phasen von Ga2O3 nur stabile Lochpolaronen, jedoch mit deutlich unterschiedlichen Bindungsenergien. Dadurch kann durch Verwendung unterschiedlicher Kristallstrukturen Eigenschaften wie Leitfähigkeit und Mobilität der Ladungsträger beeinflusst werden. / An important factor limiting the conductivity is the interaction of the charge carrier with polar phonon modes. Such a phonon-dressed charge carrier is called polaron. The strength of the electron-phonon (el-ph) interaction determines the localization of the polaron, which in turn e.g. defines its characteristic temperature dependence for the charge-carrier mobility. We focus on metal oxides with strong el-ph coupling, where small polarons are formed.
Density-functional theory is often used for calculating properties of polarons. However, there are two challenges: sensitivity of the calculated properties to the errors in exchange-correlation (XC) treatment and finite-size effects in supercell calculations. In this work, we develop an approach that addresses both challenges. The polaron properties are obtained using a modified neutral potential-energy surface (PES). By changing the fraction of exact exchange in the hybrid HSE functional we show that the modified PES model significantly reduces the dependence of the polaron properties on the XC functional. Based on Pekar's potential for the long-range el-ph coupling, we derive the proper elastic long-range behavior of the polaron and a finite-size correction for the polaron properties. These findings are proofed by an extensively test for rock salt MgO and rutile TiO2.
Finally, the approach is used to investigate the influence of the crystal structure on the polaron properties for rutile and anatase TiO2, as well as for the monoclinic β- and orthorhombic κ-phase of Ga2O3. While in rutile TiO2 only small electron polarons are stable, only small hole polarons are found in anatase. Further, small hole polarons exist in both Ga2O3 polymorphs but have significantly different binding energies. Thus, we conclude that growing crystals of the same material but with different structure can be used to manipulate conductivity and charge-carrier mobility.
|
2 |
Photoelectron spectroscopy of polarons in molecular semiconductorsWinkler, Stefanie 05 April 2016 (has links)
Das fundamentale Verständnis von Ladungsträgern in molekularen Halbleitern, die typischerweise als Polaronen bezeichnet werden, ist unverzichtbar, wenn es um das Design besonders leistungsfähiger (opto)elektronischer Bauelemente geht. Die vorliegende Arbeit hat zum Ziel ein umfangreiches Bild der Energetik von Polaronen in organischen Halbleitern zu erhalten. Zunächst geht es darum einen Probenaufbau zu finden, der es nicht nur ermöglicht Ladungsträger zu generieren, sondern auch ihre elektronische Struktur unter Verwendung von komplementären Photoemissionstechniken – Rötngen-, Ultraviolett- und inverse Photoelektronenspektroskopie - aufzuklären. Das Probenkonzept basiert darauf, dass molekulare Filme, die eine niedrigere Ionisierungsenergie als die Austrittsarbeit des zugrunde liegenden Substrates aufweisen, Fermi-level Pinning zeigen. In diesem Fall wären die höchsten besetzten Zustände der neutralen molekularen Schicht energetisch oberhalb des Substrat-Fermi-Levels angeordnet, wodurch zum Erhalt des elektronischen Gleichgewichts die Notwendigkeit für einen Ladungstransfer gegeben ist. Da die starke elektronische Kopplung zwischen Molekülen und Metallen die spektrale Information der Überschussladungsträger verändern könnte, wird die Metalloberfläche durch eine ultradünne Zwischenschicht passiviert. Die Ergebnisse zeigen, dass es durch die vorliegende starke on-site Coulomb Repulsion zur Aufspaltung des höchsten besetzen molekularen Niveaus in ein besetztes und ein unbesetztes Sub-niveau kommt. Dies widerspricht der seit Jahren etablierten Vorstellung von einem einfach besetzten Niveau in der Bandlücke des neutralen molekularen Halbleiters. Unter zusätzlicher Berücksichtigung der inter-site Coulomb Repulsion zwischen Molekülionen und neutralen Molekülen, sowie der Energieniveau Verbiegung kann schließlich ein vollständiges Bild entwickelt werden, das die etablierte Vorstellung der Energieniveaus von Ladungsträgern in molekularen Halbleitern ersetzen soll. / Understanding the nature of charge carriers in molecular semiconductors, typically termed "polarons", is indispensable for rational material design targeting future superior (opto-)electronic device performance. The present work addresses this fundamental issue to derive a comprehensive picture of polarons in organic semiconductors. Conceptual work is dedicated to identifying a sample structure, which allows both, deliberately generating charged molecules and applying the complementary photoemission techniques X-ray, ultraviolet and inverse photoelectron spectroscopy in order to assess the polaron energetics. The sample concept is based on the fact that molecular layers exhibiting an ionization energy lower than the work function of the supporting substrate show Fermi-level pinning. There, as the substrate Fermi-level is moved into the occupied density of states of the molecular adsorbate, electron transfer occurs from the molecules to the substrate. Because strong electron coupling between molecules and eg. metal surfaces might mask or alter the spectral information of excess charge carriers, such interaction needs to be inhibited by implementation of an ultrathin passivating interlayer. The comprehensive results provide evidence that the highest occupied molecular orbital level is split into an upper unoccupied and a lower occupied sub-level due to strong on-site Coulomb interaction. This finding is in marked contrast to what has been assumed for decades, where a singly occupied level was proposed to lie within the gap of the neutral molecular semiconductor. Moreover, taking into account the inter-site Coulomb interaction between molecular cations and surrounding neutral molecules, as well as energy-level bending, finally, a complete picture of the energetics associated with polarons in molecular semiconductors could be derived, which aims at replacing common perceptions.
|
3 |
Nonlinear terahertz spectroscopy in one and two dimensionsKühn, Wilhelm 25 February 2011 (has links)
Die vorliegende Dissertation behandelt Grundlagen und Anwendungen der nichtlinearen Terahertzspektrospie (THz). Diese Arbeit zeigt erstmalig, dass sich die Inversion des Quantenkaskadenlasers nach einer Störung schon innerhalb von hundert Femtosekunden wieder erholt. Außerdem wurde der exakte Generationsprozess von THz Impulsen in einem Laser-induzierten zwei-Farben Plasma untersucht. Durch Vergleich mit Simulationen wird eindeutig der Ionisationsstrom im Plasma als Quelle der THz Strahlung identifiziert. Neue Spektroskopiemethoden in ein und zwei Zeitdimensionen werden entwickelt und auf verschiedene Halbleiterstrukturen angewendet. So wird das elektrische Feld des THz-Impulses für Hochfeld-Transportexperimente genutzt. Im quanten-kinetischen Regime entkoppelt die Elektronbewegung von den Phononmoden des Kristalls, und quasi-ballistischer Transport wird möglich. Wir entwickeln ein dynamisches Polaronmodell, welches sowohl die experimentellen Ergebnisse auf kurzen Zeitskalen als auch Literaturwerte auf langen Zeitskalen zuverlässig reproduziert. Bei niedrigen Temperaturen von 80 K tritt zusätzlich THz-induziertes Interbandtunneln in GaAs auf. Die temperaturabhängige Tunnelrate hängt dabei wesentlich von der Dekohärenzrate des induzierten Prozesses ab. Desweiteren wird eine kollineare 2D THz Spektroskopiemethode entwickelt und erstmals an Quantentrogstrukturen angewendet. Eine komplizierte, nichtkollineare Strahlgeometrie ist prinzipiell nicht notwendig. Die eingeführten Frequenzvektoren erklären das zugrundeliegende N-Wellen Mischen analog zum Raum auch in der Zeit. So werden mit einer kollinearen Strahlgeometrie alle nichtlinearen Signale simultan gemessen werden. Mit diesem Konzept wurden Rabi-Oszillationen an Intersubbandübergängen in Signale verschiedener nichtlinearer Ordnung zerlegt. Die ersten 2D Korrelationsspektren im THz-Bereich demonstrieren die energetischen Kopplungen zwischen verschiedenen polaronischen Zuständen in einer Doppel-Quantentrogstruktur. / The presented thesis concerns fundamentals and applications of nonlinear terahertz (THz) spectroscopy. It is demonstrates that the a gain recovery time of a quantum cascade laser (QCL) amounts only to several hundred femtoseconds. We explored the generation process of THz pulses within a laser-induced two-color plasma and identified the ionisation current as the origin of the THz radiation. Novel methods of THz spectroscopy in one and in two dimensions are developed and applied to different semiconductor heterostructures. We use the electric field of THz pulses for high-field transport experiments. Within this quantum-kinetic regime, the electron velocity decouples from phonon modes of the crystal lattice and quasi-ballistic transport becomes feasible during the first hundreds of femtoseconds. We develop a dynamic polaron model, which reproduces the experimental results on short time scales as well as the published values on long time scales. At low temperatures of 80 K, we find additional THz-induced interband tunneling in GaAs. The temperature dependent tunneling rate depends essentially on the decoherence time of the induced process. Furthermore, a novel method of collinear 2D THz spectroscopy is developed and applied to quantum well structures. Frequency vectors are introduced to explain the underlying process of N-wave mixing not in space, but in time. This allows for a collinear beam geometry to measure all nonlinear signals simultaneously. We used this new method to decompose Rabi oscillations on intersubband transitions into nonlinear signals of different order. The first 2D correlation spectra in the THz frequency range demonstrate energetic couplings between polaronic states within an asymmetric double quantum well structure. Another experiment displays for the first time the 2D correlation spectrum of a 2pi Rabi flop on the intersubband transition of a multiple quantum well structure.
|
Page generated in 0.0268 seconds