Spelling suggestions: "subject:"2matamaterials"" "subject:"2matematerials""
111 |
Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systemsZhang, Panpan, Wang, Faxing, Yu, Minghao, Zhuang, Xiaodong, Feng, Xinliang 17 July 2019 (has links)
Nowadays, the increasing requirements of portable, implantable, and wearable electronics have greatly stimulated the development of miniaturized energy storage devices (MESDs). Electrochemically active materials and microfabrication techniques are two indispensable parts in MESDs. Particularly, the architecture design of microelectrode arrays is beneficial to the accessibility of two-dimensional (2D) active materials. Therefore, this study reviews the recent advancements in microbatteries and microsupercapacitors based on electrochemically active 2D materials. Emerging microfabrication strategies enable the precise control over the thickness, homogeneity, structure, and dimension in miniaturized devices, which offer tremendous opportunities for achieving both high energy and power densities. Furthermore, smart functions and integrated systems are discussed in detail in light of the emergence of intelligent and interactive modes. Finally, future developments, opportunities, and urgent challenges related to 2D materials, device fabrications, smart responsive designs, and microdevice integrations are provided.
|
112 |
SPINTRONIC DEVICES FROM CONVENTIONAL AND EMERGING 2D MATERIALS FOR PROBABILISTIC COMPUTINGVaibhav R Ostwal (9751070) 14 December 2020 (has links)
<p>Novel
computational paradigms based on non-von Neumann architectures are being
extensively explored for modern data-intensive applications and big-data
problems. One direction in this context is to harness the intrinsic physics of
spintronics devices for the implementation of nanoscale and low-power building
blocks of such emerging computational systems. For example, a Probabilistic
Spin Logic (PSL) that consists of networks of p-bits has been proposed for
neuromorphic computing, Bayesian networks, and for solving optimization
problems. In my work, I will discuss two types of device-components required
for PSL: (i) p-bits mimicking binary stochastic neurons (BSN) and (ii) compound
synapses for implementing weighted interconnects between p-bits. Furthermore, I
will also show how the integration of recently discovered van der Waals
ferromagnets in spintronics devices can reduce the current densities required
by orders of magnitude, paving the way for future low-power spintronics
devices.</p>
<p>First, a
spin-device with input-output isolation and stable magnets capable of
generating tunable random numbers, similar to a BSN, was demonstrated. In this
device, spin-orbit torque pulses are used to initialize a nano-magnet with
perpendicular magnetic anisotropy (PMA) along its hard axis. After removal of
each pulse, the nano-magnet can relax back to either of its two stable states,
generating a stream of binary random numbers. By applying a small Oersted field
using the input terminal of the device, the probability of obtaining 0 or 1 in
binary random numbers (P) can be tuned electrically. Furthermore, our work
shows that in the case when two stochastic devices are connected in series, “P”
of the second device is a function of “P” of the first p-bit and the weight of
the interconnection between them. Such control over correlated probabilities of
stochastic devices using interconnecting weights is the working principle of
PSL.</p>
<p>Next my
work focused on compact and energy efficient implementations of p-bits and
interconnecting weights using modified spin-devices. It was shown that unstable
in-plane magnetic tunneling junctions (MTJs), i.e. MTJs with a low energy
barrier, naturally fluctuate between two states (parallel and anti-parallel)
without any external excitation, in this way generating binary random numbers.
Furthermore, spin-orbit torque of tantalum is used to control the time spent by
the in-plane MTJ in either of its two states i.e. “P” of the device. In this
device, the READ and WRITE paths are separated since the MTJ state is read by
passing a current through the MTJ (READ path) while “P” is controlled by
passing a current through the tantalum bar (WRITE path). Hence, a BSN/p-bit is
implemented without energy-consuming hard axis initialization of the magnet and
Oersted fields. Next, probabilistic switching of stable magnets was utilized to
implement a novel compound synapse, which can be used for weighted
interconnects between p-bits. In this experiment, an ensemble of nano-magnets
was subjected to spin-orbit torque pulses such that each nano-magnet has a
finite probability of switching. Hence, when a series of pulses are applied,
the total magnetization of the ensemble gradually increases with the number of
pulses</p>
<p>applied similar to the
potentiation and depression curves of synapses. Furthermore, it was shown that
a modified pulse scheme can improve the linearity of the synaptic behavior,
which is desired for neuromorphic computing. By implementing both neuronal and
synaptic devices using simple nano-magnets, we have shown that PSL can be
realized using a modified Magnetic Random Access Memory (MRAM) technology. Note
that MRAM technology exists in many current foundries.</p>
<p>To further
reduce the current densities required for spin-torque devices, we have
fabricated heterostructures consisting of a 2-dimensional semiconducting
ferromagnet (Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>) and a metal with
spin-orbit coupling metal (tantalum). Because of properties such as clean
interfaces, perfect crystalline nanomagnet structure and sustained magnetic
moments down to the mono-layer limit and low current shunting, 2D ferromagnets
require orders of magnitude lower current densities for spin-orbit torque
switching than conventional metallic ferromagnets such as CoFeB.</p>
|
113 |
Magnetic Properties of Two-Dimensional Honeycomb-Lattice MaterialsUtermohlen, Franz Gunther January 2021 (has links)
No description available.
|
114 |
Applications of Two-Dimensional Layered Materials in Interconnect TechnologyChun-Li Lo (9337943) 14 September 2020 (has links)
<p>Copper (Cu) has been used as
the main conductor in interconnects due to its low resistivity. However,
because of its high diffusivity, diffusion barriers/liners (tantalum
nitride/tantalum; TaN/Ta) must be incorporated to surround Cu wires. Otherwise,
Cu ions/atoms will drift/diffuse through the inter-metal dielectric (IMD) that
separates two distinct interconnects, resulting in circuit shorting and chip
failures. The
scaling limit of conventional Cu diffusion barriers/liners has become the
bottleneck for interconnect technology, which in turn limits the IC
performance. The interconnect
half-pitch size will reach ~20 nm in the coming sub-5 nm technology nodes.
Meanwhile, the TaN/Ta (barrier/liner) bilayer stack has to be > 4 nm to
ensure acceptable liner and diffusion barrier properties. Since TaN/Ta occupy a
significant portion of the interconnect cross-section and they are much more
resistive than Cu, the effective conductance of an ultra-scaled interconnect
will be compromised by the thick bilayer. Therefore, two dimensional (2D) layered materials have been
explored as diffusion barrier alternatives owing to their atomically thin body thicknesses. However, many of the proposed 2D
barriers are prepared at too high temperatures to be compatible with the
back-end-of-line (BEOL) technology. In addition, as important as the diffusion
barrier properties, the liner properties of 2D materials must be evaluated,
which has not yet been pursued. </p>
The objective of the
thesis is to develop a 2D barrier/liner that overcomes the issues mentioned.
Therefore, we first visit various 2D layered materials to understand their
fundamental capability as barrier candidates through theoretical calculations. Among
the candidates, hexagonal-boron-nitride (h-BN) and molybdenum disulfide (MoS<sub>2</sub>)
are selected for experimental studies. In addition to studying their fundamental properties to know their
potential, we have also developed techniques that can realize
low-temperature-grown 2D layered materials. Metal-organic
chemical vapor deposition (MOCVD)
is adopted for the synthesis of BEOL-compatible MoS<sub>2</sub>. The electrical
test results demonstrate the promises of integrating 2D layered materials to
the state-of-the-art interconnect technology. Furthermore, by considering not
only diffusion barrier properties but also liner properties, we develop another
2D layered material, tantalum sulfide (TaS<sub>x</sub>), using plasma-enhanced chemical vapor deposition (PECVD). The TaS<sub>x</sub> is promising in
both barrier and liner aspects and is BEOL-compatible. Therefore, we believed
that the conventional TaN/Ta bilayer stack can be
replaced with an ultra-thin TaS<sub>x</sub> layer to maximize the Cu volume for
ultra-scaled interconnects and
improve the performance. Furthermore,
Since via resistance has become the bottleneck for
overall interconnect performance, we study the vertical conduction of TaS<sub>x</sub>.
Both the intrinsic and extrinsic properties of this material are investigated
and engineering approaches to improve the vertical conduction are also tested. Finally,
we explore the possibilities of benefiting from 2D materials in other
applications and propose directions for future studies.
|
115 |
Electronic and Spin Dependent Phenomena in Two-Dimensional Materials and HeterostructuresXu, Jinsong 03 December 2018 (has links)
No description available.
|
116 |
Magnetic Interactions in Transition Metal DichalcogenidesAvalos Ovando, Oscar Rodrigo January 2018 (has links)
No description available.
|
117 |
Laser shock nanostraining of 2D materials and van der Waals heterostructuresMaithilee Motlag (9597326) 26 April 2021 (has links)
<p>Since the successful exfoliation of graphene, two-dimensional (2D) materials have attracted a lot of scientific interest due to their electronic, chemical, and mechanical properties. Due their reduced dimensionality, these 2D materials exhibit superior mechanical and optoelectronic properties when compared to their bulk counterparts. Within the family of 2D materials, the ultrathin transition metal dichalcogenides (TMDs) such as Tungsten diselenide and Molybdenum disulphide have gained significant attention due to their chemical versatility and tunability. Furthermore, it is possible to leverage the distinct characteristic properties of these 2D materials, which are held together by van der Waals forces, by stacking different 2D layers on top of each other resulting in van der Waals (vdW) heterostructures. Due to the absence of feasible methods to effectively deform the crystal structures of these 2D materials and vdW heterostructures, their mechanical properties have not been thoroughly understood. The atomistic simulations can effectively capture the material behavior at the nanoscale level and help us not only not only understand the mechanical properties of these materials but also aid in the development of tailored processes to tune the material properties for the design of novel metamaterials. Using atomistic simulations, we develop the process - property relationships which can guide the direction of experimentation efforts, thereby making the process of discovering and designing new metamaterials efficient. </p><p>In this work, we have used laser shock nanostraining technique which is a scalable approach to modulate the optomechanical properties of 2D materials and vdW materials for practical semiconductor industry applications. The deformation mechanisms of 2D materials such as graphene, boron nitride (BN) and TMDs such as WSe<sub>2</sub> and MoS<sub>2</sub> are examined by employing a laser shocking process. We report studies on crystal structure deformation of multilayered WSe<sub>2</sub> and monolayer graphene at ultra-high strain rate using laser shock . The laser shocking process generates high pressure at GPa level, causing asymmetric 3D straining in graphene and a novel kinked-like locking structure in multilayered WSe<sub>2</sub>. The deformation processes and related mechanical behaviors in laser shocked 2D materials are examined using atomistic simulations. Moiré heterostructures can be obtained by introducing a twist angle between these 2D layers, which can result into vdW materials with different properties, thereby adding an additional degree of freedom in the process-property design approach. We were able to successfully create a tunable stain profile in 2D materials and vdW heterostructures to modulate the local properties such as friction, and bandgap by controlling the level of laser shock, twist angle between the 2D layers and by applying appropriate laser shock pressure . We thus extend this knowledge to further explore the pathways of strain modulation using a combination of laser shocking process, moiré engineering, and strain engineering in 2D materials consisting of graphene, BN, and MoS<sub>2</sub> and to develop the process - property relationships in vdW materials. </p><p>In summary, this research presents a systematic understanding of the effect of laser shocking process on the van der Waals materials and demonstrates the modulation of mechanical and opto-electronic property using laser nanostraining approach. This understanding provides us with opportunities for deterministic design of 2D materials with controllable properties for semiconductor and nanoelectronics applications.</p>
|
118 |
Evaporative Vapor Deposition for Depositing 2D MaterialsGleason, Kevin 01 January 2015 (has links)
The development of a new deposition technique called evaporative vapor deposition (EVD) is reported, allowing deposition and formation of atomically-thin, large area materials on arbitrary substrates. This work focuses on the highly popular monolayer material – graphene oxide (GO). A droplet of a GO solution is formed on a heated polymer substrate, and maintained at steady-state evaporation (all droplet parameters are held constant over time). The polymer substrate is laser patterned to control the droplet's contact line dynamics and the droplet's contact angle is maintained using a computer controlled syringe pump. A room temperature silicon wafer is translated through the vapor field of the evaporating GO droplet using a computer controlled translation stage. Dropwise condensation formed on the silicon wafer is monitored using both optical and infrared cameras. The condensation rate is measured to be ~50pL/mm2?s – 500 pL/mm2?s and dependent on the substrate translation speed and height difference between the droplet's apex and substrate surface. Nano-sized GO flakes carried through the vapor phase are captured in the condensate, depositing on the translating wafer. Deposition rate is dependent on the stability of the solution and droplet condensate size. Characterization with Raman spectroscopy show expected shifts for graphene/graphite. The presented EVD technique is promising toward formation of large scale 2D materials with applications to developing new technologies.
|
119 |
Design, Fabrication, and Characterization of Metals Reinforced with Two-Dimensional (2D) MaterialsCharleston, Jonathan 05 July 2023 (has links)
The development of metals that can overcome the strength-ductility-weight trade-off has been an ongoing challenge in engineering for many decades. A promising option for making such materials are Metal matrix composites (MMCs). MMCs contain dispersions of reinforcement in the form of fibers, particles, or platelets that significantly improve their thermal, electrical, or mechanical performance. This dissertation focuses on reinforcement with two-dimensional (2D) materials due to their unprecedented mechanical properties. For instance, compared to steel, the most well-studied 2D material, graphene, is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa). Examples of reinforcement by graphene have achieved increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. However, the superior mechanical properties of graphene are not fully transferred to the matrix in conventional MMCs, a phenomenon known as the "valley of death." In an effort to develop key insight into how the relationships between composite design, processing, structure, properties, and mechanics can be used to more effectively transfer the intrinsic mechanical properties of reinforcements to bulk composite materials, nanolayered composite systems made of Ni, Cu, and NiTi reinforced with graphene or 2D hexagonal boron nitride h-BN is studied using experimental techniques and molecular dynamics (MD) simulations. / Doctor of Philosophy / The design of new metals with concurrently improved strength and ductility has been an enduring goal in engineering for many decades. The utilization of components made with these new materials would reduce the weight of structures without sacrificing their performance. Such materials have the potential to revolutionize many industries, from electronics to aerospace.
Traditional methods of improving the properties of metals by thermomechanical processing have approached a point where only minor performance improvements can be achieved. The development of Metal matrix composites (MMCs) is among the best approaches to achieving the strength-ductility goal. Metal matrix composites are a class of materials containing reinforcements of dissimilar materials that significantly improve their thermal conductivity, electrical conductivity, or mechanical performance. Reinforcements are typically in the form of dispersed fibers, particles, or platelets. The ideal reinforcement materials have superior mechanical properties compared to the metal matrix, a high surface area, and a strong interfacial bond with the matrix. Two-dimensional (2D) materials (materials made up of a single to a few layers of ordered atoms) are attractive for reinforcement in composite materials because they possess unprecedented intrinsic properties. The most well-studied 2D material, graphene, is made of a single layer of carbon atoms arranged in a hexagonal honeycomb pattern. It is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa) than steel. Examples of graphene reinforcing have shown increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. Despite their exceptional mechanical properties, the superior mechanical properties of graphene are not fully transferred to the matrix when incorporated into conventional metal matrix composites. This phenomenon, known as the "valley of death," refers to the loss of mechanical performance at different length scales. One cause of this phenomenon is the difficulty of evenly dispersing the reinforcements in the matrix using traditional fabrication techniques. Another is the presence of dislocations in the metal matrix, which cause very large local lattice strains in the graphene. This atomistic-scale deformation at the interface between the metal and the graphene can significantly weaken it, leading to failure at low strains before reaching its intrinsic failure stress and strain.
This dissertation aims to provide insight into how the relationships between composites' design, processing, structure, properties, and mechanics can be used to transfer intrinsic mechanical properties of reinforcements to bulk composite materials more effectively. For this, nanolayered composite systems of Ni and Cu reinforced with graphene or 2D h-BN were studied using experimental techniques and molecular dynamics (MD) simulations to elucidate the underlying mechanisms behind the composites' material structure and mechanical behavior. Additionally, we explore the incorporation of graphene in a metallic matrix that does not deform through dislocations (or shear bands), such as the shape memory alloy nickel-titanium ( Nitinol or NiTi), to avoid low strain failure of the metal/graphene interface. This theoretical strengthening mechanism is investigated by designing and fabricating NiTi/graphene composites.
|
120 |
Nanoscale Characterization of Defects in Complex Oxides and GermananeAsel, Thaddeus J. 13 September 2018 (has links)
No description available.
|
Page generated in 0.0644 seconds