Spelling suggestions: "subject:"300200 crop anda pasture productionsection"" "subject:"300200 crop anda pasture productionisation""
51 |
The effect of floral resources on the leafroller (Lepidoptera: Tortricidae) parasitoid Dolichogenidea tasmanica (Cameron)(Hymenoptera: Braconidae) in selected New Zealand vineyardsBerndt, Lisa A. January 2002 (has links)
In this study, buckwheat (Fagopyrum esculentum Moench) and alyssum (Lobularia maritima (L.)) flowers were used to examine the effect of floral resources on the efficacy of the leafroller parasitoid Dolichogenidea tasmanica (Cameron) in vineyards. This was done by assessing the influence of these flowers on parasitoid abundance and parasitism rate, and by investigating the consequences of this for leafroller abundance. In laboratory experiments, alyssum flowers were used to investigate the effect of floral food on the longevity, fecundity and sex ratio of D. tasmanica. Dolichogenidea tasmanica comprised more than 95 % of parasitoids reared from field collected leafrollers in this study. The abundance of D. tasmanica during the 1999-2000 growing season was very low compared with previous studies, possibly due to the very low abundance of its leafroller hosts during the experiment. The number of males of this species on yellow sticky traps was increased (although not significantly) when buckwheat flowers were planted in a Marlborough vineyard; however, the number of female D. tasmanica on traps was no greater with flowers than without. The abundance of another leafroller parasitoid, Glyptapanteles demeter (Wilkinson)(Hymenoptera: Braconidae), on traps was also not significantly affected by the presence of buckwheat flowers, although females of this species were caught in greater numbers in the control than in buckwheat plots. Naturally-occurring leafrollers were collected from three vineyard sites in Marlborough, and one in Canterbury during the 2000-2001 season to assess the effect of buckwheat and alyssum flowers on parasitism rate. Parasitism rate more than doubled in the presence of buckwheat at one of the Marlborough vineyards, but alyssum had no effect on parasitism rate in Canterbury. A leafroller release/recover method, used when naturally-occurring leafrollers were too scarce to collect, was unable to detect any effect of buckwheat or alyssum on parasitism rate. Mean parasitism rates of approximately 20 % were common in Marlborough, although rates ranged from 0 % to 45 % across the three vineyard sites in that region. In Canterbury in April, mean parasitism rates were approximately 40 % (Chapter 4). Rates were higher on upper canopy leaves (40-60 %) compared with lower canopy leaves and bunches (0-25 %). Leafroller abundance was apparently not affected by the presence of buckwheat in Marlborough, or alyssum in Canterbury. Buckwheat did, however, significantly reduce the amount of leafroller evidence (webbed leafroller feeding sites on leaves or in bunches) in Marlborough, suggesting that the presence of these flowers may reduce leafroller populations. Leafrollers infested less than 0.1 % of Cabernet Sauvignon leaves throughout the 1999-2000 growing season, but increased in abundance in bunches to infest a maximum of 0.5 % of bunches in late March in Marlborough. In Pinot Noir vines in the 2000-2001 season, leafroller abundance was also low, although sampling was not conducted late in the season when abundance reaches a peak. In Riesling vines in Canterbury, between 1.5 % and 2.5 % of bunches were infested with leafrollers in April. In the laboratory, alyssum flowers significantly increased the longevity and lifetime fecundity of D. tasmanica compared with a no-flower treatment. However, daily fecundity was not increased by the availability of food, suggesting that the greater lifetime fecundity was related to increases in longevity. Parasitoids were also able to obtain nutrients from whitefly honeydew, which resulted in similar longevity and daily fecundity to those when alyssum flowers were present. The availability of food had a significant effect on the offspring sex ratio of D. tasmanica. Parasitoids reared from naturally-occurring leafrollers produced an equal sex ratio, assumed to be the evolutionarily stable strategy (ESS) for this species. In the laboratory, this ESS was observed only when parasitoids had access to alyssum flowers. Without food, or with honeydew only, sex ratios were strongly male-biased. In the field, floral resources affected the sex ratio of D. tasmanica only when this species was reared from leafrollers released and recovered in Marlborough. In that experiment, buckwheat shifted the sex ratio in favour of female production from the equal sex ratio found in control plots. No firm explanations can be given to account for these results, due to a lack of research in this area. Possible mechanisms for the changes in sex ratio with flowers are discussed. This study demonstrated that flowers are an important source of nutrients for D. tasmanica, influencing the longevity, fecundity and offspring sex ratio of this species. However, only some of the field experiments were able to show any positive effect of the provision of floral resources on parasitoid abundance or parasitism rate. More information is needed on the role these parasitoids, and other natural enemies, play in regulating leafroller populations in New Zealand vineyards, and on how they use floral resources in the field, before recommendations can be made regarding the adoption of this technology by growers.
|
52 |
Eco-climatic assessment of the potential establishment of exotic insects in New ZealandPeacock, Lora January 2005 (has links)
To refine our knowledge and to adequately test hypotheses concerning theoretical and applied aspects of invasion biology, successful and unsuccessful invaders should be compared. This study investigated insect establishment patterns by comparing the climatic preferences and biological attributes of two groups of polyphagous insect species that are constantly intercepted at New Zealand's border. One group of species is established in New Zealand (n = 15), the other group comprised species that are not established (n = 21). In the present study the two groups were considered to represent successful and unsuccessful invaders. To provide background for interpretation of results of the comparative analysis, global areas that are climatically analogous to sites in New Zealand were identified by an eco-climatic assessment model, CLIMEX, to determine possible sources of insect pest invasion. It was found that south east Australia is one of the regions that are climatically very similar to New Zealand. Furthermore, New Zealand shares 90% of its insect pest species with that region. South east Australia has close trade and tourism links with New Zealand and because of its proximity a new incursion in that analogous climate should alert biosecurity authorities in New Zealand. Other regions in western Europe and the east coast of the United States are also climatically similar and share a high proportion of pest species with New Zealand. Principal component analysis was used to investigate patterns in insect global distributions of the two groups of species in relation to climate. Climate variables were reduced to temperature and moisture based principal components defining four climate regions, that were identified in the present study as, warm/dry, warm/wet, cool/dry and cool/moist. Most of the insect species established in New Zealand had a wide distribution in all four climate regions defined by the principal components and their global distributions overlapped into the cool/moist, temperate climate where all the New Zealand sites belong. The insect species that have not established in New Zealand had narrow distributions within the warm/wet, tropical climates. Discriminant analysis was then used to identify which climate variables best discriminate between species presence/absence at a site in relation to climate. The discriminant analysis classified the presence and absence of most insect species significantly better than chance. Late spring and early summer temperatures correctly classified a high proportion of sites where many insect species were present. Soil moisture and winter rainfall were less effective discriminating the presence of the insect species studied here. Biological attributes were compared between the two groups of species. It was found that the species established in New Zealand had a significantly wider host plant range than species that have not established. The lower developmental threshold temperature was on average, 4°C lower for established species compared with non-established species. These data suggest that species that establish well in New Zealand have a wide host range and can tolerate lower temperatures compared with those that have not established. No firm conclusions could be drawn about the importance of propagule pressure, body size, fecundity or phylogeny for successful establishment because data availability constrained sample sizes and the data were highly variable. The predictive capacity of a new tool that has potential for eco-climatic assessment, the artificial neural network (ANN), was compared with other well used models. Using climate variables as predictors, artificial neural network predictions were compared with binary logistic regression and CLIMEX. Using bootstrapping, artificial neural networks predicted insect presence and absence significantly better than the binary logistic regression model. When model prediction success was assessed by the kappa statistic there were also significant differences in prediction performance between the two groups of study insects. For established species, the models were able to provide predictions that were in moderate agreement with the observed data. For non-established species, model predictions were on average only slightly better than chance. The predictions of CLIMEX and artificial neural networks when given novel data, were difficult to compare because both models have different theoretical bases and different climate databases. However, it is clear that both models have potential to give insights into invasive species distributions. Finally the results of the studies in this thesis were drawn together to provide a framework for a prototype pest risk assessment decision support system. Future research is needed to refine the analyses and models that are the components of this system.
|
53 |
Use of floral resources by the lacewing Micromus tasmaniae and its parasitoid Anacharis zealandica, and the consequences for biological control by M. tasmaniaeRobinson, K. A. January 2009 (has links)
Arthropod species that have the potential to damage crops are food resources for communities of predators and parasitoids. From an agronomic perspective these species are pests and biocontrol agents respectively, and the relationships between them can be important determinants of crop yield and quality. The impact of biocontrol agents on pest populations may depend on the availability of other food resources in the agroecosystem. A scarcity of such resources may limit biological control and altering agroecosystem management to alleviate this limitation could contribute to pest management. This is a tactic of ‘conservation biological control’ and includes the provision of flowers for species that consume prey as larvae but require floral resources in their adult stage. The use of flowers for pest management requires an understanding of the interactions between the flowers, pests, biocontrol agents and non-target species. Without this, attempts to enhance biological control might be ineffective or detrimental. This thesis develops our understanding in two areas which have received relatively little attention: the role of flowers in biological control by true omnivores, and the implications of flower use by fourth-trophic-level life-history omnivores. The species studied were the lacewing Micromus tasmaniae and its parasitoid Anacharis zealandica. Buckwheat flowers Fagopyrum esculentum provided floral resources and aphids Acyrthosiphon pisum served as prey. Laboratory experiments with M. tasmaniae demonstrated that although prey were required for reproduction, providing flowers increased survival and oviposition when prey abundance was low. Flowers also decreased prey consumption by the adult lacewings. These experiments therefore revealed the potential for flowers to either enhance or disrupt biological control by M. tasmaniae. Adult M. tasmaniae were collected from a crop containing a strip of flowers. Analyses to determine the presence of prey and pollen in their digestive tracts suggested that predation was more frequent than foraging in flowers. It was concluded that the flower strip probably did not affect biological control by lacewings in that field, but flowers could be significant in other situations. The lifetime fecundity of A. zealandica was greatly increased by the presence of flowers in the laboratory. Providing flowers therefore has the potential to increase parasitism of M. tasmaniae and so disrupt biological control. A. zealandica was also studied in a crop containing a flower strip. Rubidium-marking was used to investigate nectar-feeding and dispersal from the flowers. In addition, the parasitoids’ sugar compositions were determined by HPLC and used to infer feeding histories. Although further work is required to develop the use of these techniques in this system, the results suggested that A. zealandica did not exploit the flower strip. The sugar profiles suggested that honeydew had been consumed by many of the parasitoids. A simulation model was developed to explore the dynamics of aphid, lacewing and parasitoid populations with and without flowers. This suggested that if M. tasmaniae and A. zealandica responded to flowers as in the laboratory, flowers would only have a small effect on biological control within a single period of a lucerne cutting cycle. When parasitoids were present, the direct beneficial effect of flowers on the lacewing population was outweighed by increased parasitism, reducing the potential for biological control in future crops. The results presented in this thesis exemplify the complex interactions that may occur as a consequence of providing floral resources in agroecosystems and re-affirm the need for agroecology to inform the development of sustainable pest management techniques.
|
Page generated in 0.1576 seconds