• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 7
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 50
  • 50
  • 50
  • 14
  • 14
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mesenchymal Stem Cells Encapsulated and Aligned in Self-Assembling Peptide Hydrogels

Kasani, Yashesh Varun 12 1900 (has links)
This study presents a viable strategy using fmoc-protected peptides hydrogels, to encapsulate and stretch mesenchymal stem cells (MSC). To explore the peptide hydrogel potential, a custom mechanical stretching device with polydimethylsiloxane (PDMS) chambers were used to stretch MSCs encapsulated in Fmoc hydrogels. We investigated the impact of fmoc- FF prepared in dimethyl sulfoxide (DMSO), 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) and deionizied water in the self-assembly, and mechanical properties of the gels. The peptide hydrogel is formed through molecular self-assembly of peptide sequence into β-sheets that are connected with the π-π aromatic stacking of F-F groups. The hydrogels provided a stiff, hydrated gel with round nanofiber morphology representing an elastic modulus of 174-266 KPa. MSCs cultured on peptide hydrogels undergo viability, morphology, and alignment evaluations using MTT, live/dead, and phalloidin (F-actin) staining. The F-actins of 3D- cultured MSCs in Fmoc-FF/HFP, and Fmoc-FF/DMSO followed by mechanical stretching showed elongated morphology with defined microfilament fibers compared to the round and spherical F-actin shape of the control cells. Peptide gels with 5mM concentration preserved 100% viability of MSC. Results reveals the feasibility and conditions for successful cell encapsulation and alignment within peptide hydrogels. Encapsulation of MSC in peptide nanofiber followed by a stretching process present a promising tissue engineering platform. By enhancing our understanding of MSC-peptide hydrogel interactions, this research con- tributes to the development of biomaterials tailored for regenerative medicine.
22

Development and Application of a 3-D Perfusion Bioreactor Cell Culture System for Bone Tissue Engineering

Porter, Blaise Damian 23 November 2005 (has links)
Tissue engineering strategies that combine porous biomaterial scaffolds with cells capable of osteogenesis or bioactive proteins have shown promise as effective bone graft substitutes. Attempts to culture bone tissue-engineering constructs thicker than 1mm in vitro often result in a shell of viable cells and mineralized matrix surrounding a necrotic core. To address this limitation, we developed a perfusion bioreactor system that improves mass transport throughout large cell-seeded constructs. Additionally, we established and validated 3-D computational methods to model flow and shear stresses within the microporosity of perfused constructs. Micro-CT scanning and analysis techniques were used to non-destructively monitor mineral development over time in culture. CFD modeling of axial perfusion through cylindrical scaffolds with a regular microarchitecture revealed a uniform flow field distributed throughout the scaffold. Perfusion resulted in a 140-fold increase in mineral deposition at the interior of 3 mm thick polymer scaffolds seeded with rat bone marrow stromal cells. The total detected mineral volume tripled as the construct length was increased from 3 to 9 mm. Increasing scaffold length to 9 mm did not affect the mineral volume fraction (MVF) within the full volume of each construct. Mineral volume, spatial distribution, density, particle size and particle number were then quantified on cell-seeded constructs in 5 different culture environments. The effect of time varying flow conditions was compared with continuous perfusion as well as two different control cell culture methods in an attempt to enhance mineralized matrix within the constructs. Intermittent elevated perfusion and dynamic culture in an orbital rocker plate produced the greatest amount of mineral within 9 mm long constructs compared to low continuous flow and high continuous flow cases. Together, these studies indicate that dynamic culture conditions enhance construct development with regards to cell viability, mineralized matrix deposition, growth rate, and distribution. Furthermore, these techniques provide a rational approach to selecting perfusion culture conditions that optimize the amount and distribution of mineralized matrix production. Finally, the established perfusion bioreactor, in combination with micro-CT analysis, provides a foundation for evaluating new scaffolds and cell types that may be useful for the development of effective bone graft substitutes.
23

Ultrasound-assisted Interactions of Natural Killer Cells with Cancer Cells and Solid Tumors

Christakou, Athanasia January 2014 (has links)
In this Thesis, we have developed a microtechnology-based method for culturing and visualizing high numbers of individual cells and cell-cell interactions over extended periods of time. The foundation of the device is a silicon-glass multiwell microplate (also referred as microchip) directly compatible with fluorescence microscopy. The initial microchip design involved thousands of square wells of sizes up to 80 µm, for screening large numbers of cell-cell interactions at the single cell level. Biocompatibility and confinement tests proved the feasibility of the idea, and further investigation showed the conservation of immune cellular processes within the wells. Although the system is very reliable for screening, limitations related to synchronization of the interaction events, and the inability to maintain conjugations for long time periods, led to the development of a novel ultrasonic manipulation multiwell microdevice. The main components of the ultrasonic device is a 100-well silicon-glass microchip and an ultrasonic transducer. The transducer is used for ultrasonic actuation on the chip with a frequency causing half-wave resonances in each of the wells (2.0-2.5 MHz for wells with sizes 300-350 µm). Therefore, cells in suspension are directed by acoustic radiation forces towards a pressure node formed in the center of each well. This method allows simultaneous aggregation of cells in all wells and sustains cells confined within a small area for long time periods (even up to several days). The biological target of investigation in this Thesis is the natural killer (NK) cells and their functional properties. NK cells belong to the lymphatic group and they are important factors for host defense and immune regulation. They are characterized by the ability to interact with virus infected cells and cancer cells upon contact, and under suitable conditions they can induce target cell death. We have utilized the ultrasonic microdevice to induce NK-target cell interactions at the single cell level. Our results confirm a heterogeneity within IL-2 activated NK cell populations, with some cells being inactive, while others are capable to kill quickly and in a consecutive manner. Furthermore, we have integrated the ultrasonic microdevice in a temperature regulation system that allows to actuate with high-voltage ultrasound, but still sustain the cell physiological temperature. Using this system we have been able to induce formation of up to 100 solid tumors (HepG2 cells) in parallel without using surface modification or hydrogels. Finally, we used the tumors as targets for investigating NK cells ability to infiltrate and kill solid tumors.  To summarize, a method is presented for investigating individual NK cell behavior against target cells and solid tumors. Although we have utilized our technique to investigate NK cells, there is no limitation of the target of investigation. In the future, the device could be used for any type of cells where interactions at the single cell level can reveal critical information, but also to form solid tumors of primary cancer cells for toxicology studies. / <p>QC 20150113</p>
24

Exploring the impact of the tumor microenvironment on nuclear morphometry: lessons learned for sensitivity to cytotoxic treatment

Apekshya Chhetri (10731045) 05 May 2021 (has links)
<p>Breast cancer remains the leading cause of death among females worldwide. While systemic therapy for breast cancer may work effectively in the early phases, for more than 10% of primary and 50% of metastatic cases, the disease eventually progresses, resisting treatments. To overcome this issue, recognizing markers of resistance as early as possible is critical. However, the underlying mechanisms of resistance remains elusive. The influence of microenvironmental factors of the extracellular matrix (ECM) on tumor behavior has been revealed relatively recently and increased stiffness of ECM is associated with cancer progression. Additionally, impacts of other matrix components such as non-neoplastic epithelial cells (that may constitute an important portion of the tumor microenvironment -TME) are suspected to influence tumors but they have not been investigated in detail. Besides, it is not known whether the response to increasing stiffness depends on the subtypes of breast cancer. Here, using breast models in 3D cell culture we have shown that the non-neoplastic epithelial compartment can influence the effect of matrix stiffness even for tumors recognized as highly aggressive. The degree of tumor aggressiveness recognizable via tumor architecture is associated with a differential behavior when ECM stiffness changes. In a 3D microenvironmental context, which provides an optimal level of constraints for tumors to display their phenotype, we report stiffness and paracrine influence impact on cisplatin-mediated cytotoxicity, which correlates with distinct nuclear morphometry and distribution pattern associated with population heterogeneity. The response pattern varies across cell lines representing higher and lower levels of aggressiveness in the basal-like subtypes of breast cancer. Our results also highlight the need for integrating biochemical and physical components of the TME in future designs of <i>in vitro</i> drug screening platforms.</p>
25

Three-Dimensional Human Neural Stem Cell Culture for High-Throughput Assessment of Developmental Neurotoxicity

Joshi, Pranav 04 June 2019 (has links)
No description available.
26

In vitro 3D fluorescent cell-based assay reporting gene regulation for high-throughput drug screening

Li, You 27 September 2022 (has links)
No description available.
27

3D Cell Culture Model Synthesized By Polycaprolactone Nanofiber Electrospinning

Zhao, Huizhi 01 October 2018 (has links)
No description available.
28

Modifying Cellular Behavior Through the Control of Insoluble Matrix Cues: The Influence of Microarchitecture, Stiffness, Dimensionality, and Adhesiveness on Cell Function

Hogrebe, Nathaniel James January 2016 (has links)
No description available.
29

The prostatic tumour stroma

Bonda, Ulrich 12 August 2016 (has links) (PDF)
The majority of cancer research projects mainly focus on the epithelial cancer cell, while the role of the tumour stroma has been largely neglected. Conventional 2D techniques, such as well plates and other kinds of tissue culture plastic, and animal models are mainly used to broaden our understanding of how tumours arise, develop, and induce metastasis. However, there is accumulating evidence suggesting a tremendous impact of the non‐cancerous tumour stroma on carcinogenesis, while other publications illustrate the great importance of advanced 3D in vitro models for cancer research. The overall goal of this work was to investigate how cancer associated fibroblasts (CAFs; the most abundant component in the tumour stroma) and normal prostate fibroblasts (NPFs), isolated from patients diagnosed with aggressive forms of prostate cancer, contribute to angiogenesis, an important hallmark of cancer progression. For this purpose, a 3D in vitro angiogenesis co‐culture model was established. At first, two (semi‐) synthetic hydrogel platforms, gelatine methacrylate (GelMA) and star‐shaped (star)PEG‐heparin hydrogels were characterised and their physicochemical properties were compared with each other. Interestingly, GelMA gels shrank while starPEG‐heparin gels swelled in cell culture medium over the course of 24 hours. The cell concentration, in addition to the stiffness, was critical for the formation of endothelial networks, and the knowledge of swelling behaviour enabled the adjustment of initial cell density to ensure the density between both gel types was comparable. Moreover, preliminary tests with mesenchymal stem cells demonstrated that the hydrogel can be actively remodelled, as evaluated by stiffness parameters at day one and seven of incubation. Growth factors (GFs) affect cellular fate and behaviour, and storage, presentation and administration of such chemokines can be critical for certain cellular applications. Due to the high anionic charge density of heparin, starPEG‐heparin hydrogels are known to reversibly immobilise several GFs and thereby might mimic the GF reservoir of the extra cellular matrix. Thus, transport processes of GFs with low and high heparin affinity inside these hydrogels were analysed by fluorescence correlation spectroscopy and a bulk diffusion approach. Results indicated that diffusion constants were synergistically decreased with increasing size and heparin affinity of the diffusant. Next, the capability of endothelial cells (ECs) to self‐assemble and organise into 3D capillary networks was tested in GelMA, starPEG‐heparin and Matrigel hydrogels. Only starPEG‐heparin hydrogels allowed the formation of interconnected capillaries in macroscopic hydrogel samples. However, as it is widely used to test for pro‐ and anti‐angiogenic agents, the 2D Matrigel angiogenesis assay was included for subsequent co‐culture experiments of ECs and fibroblasts in order to investigate how the stromal cells influence the formation of endothelial networks. For a detailed characterisation of 3D structures, a conventionally applied 2D method (Maximum Intensity Projection for 3D reconstructed images, MIP) was compared to an optimised 3D analysing tool. As a result, it was discovered that MIP analysis did not allow for an accurate determination of 3D endothelial network parameters, and can result in misleading interpretations of the data set. Indirect co‐cultures of hydrogel‐embedded ECs with a 2D layer of fibroblasts showed that fibroblast‐derived soluble factors, including stromal cell‐derived factor 1 and interleukin 8, affected endothelial network properties. However, only co‐encapsulation of ECs and fibroblasts in starPEG‐heparin hydrogel discs revealed remarkable changes in endothelial network parameters between CAF and NPF samples. In detail, the total length and branching of the capillaries was increased. For two donor pairs, the diameter of capillaries was decreased in CAF samples compared to NPF samples, underlining the high physiological relevance of this model. In contrast, significant differences in 2D Matrigel assays were not detected between, CAF, NPF and control (ECs only) samples. In summary, a 3D angiogenesis co‐culture system was successfully developed and used to characterise stromal‐endothelial interactions in detail. The combination of advanced biomaterials (starPEG‐heparin) and 3D analysing techniques goes beyond conventional 2D in vitro cancer research, and opens new avenues for the development of more complex models to further improve the acquisition of more biologically relevant data.
30

Rôle des protéines Orai1 et STIM1 dans les lymphomes B non-Hodgkiniens, établissement d'un modèle d'étude en 3D. / Role of Orai1 and STIM1 in B-cell non-Hodgkin lymphomas, establishment of a new 3D cell culture model.

Latour, Simon 26 March 2018 (has links)
Les lymphomes B non-Hodgkiniens (LNHB) représentent le type d’hémopathie maligne le plus fréquent. Ces pathologies sont traitées par l’association de chimiothérapies conventionnelles et d’immunothérapies dirigées contre le CD20. Bien qu’efficace, 40% des patients résistent ou rechutent après le traitement. Deux raisons peuvent expliquer ces échecs thérapeutiques : 1) l’absence de cibles thérapeutiques impliquées dans plusieurs processus oncogéniques et 2) l’absence de modèles pré-cliniques de LNHB pertinents pour le test de molécules thérapeutiques et la compréhension de la lymphomagenèse. Le calcium est un messager ubiquitaire qui est impliqué dans de nombreux processus cellulaires en condition physiologique et pathologique. La principale voie d’entrée de calcium dans les lymphocytes B est l’entrée capacitive de calcium médiée par Orai1 et STIM1. Ces deux protéines ont été largement décrites pour être impliquées dans les processus tumoraux de nombreux cancers, cependant leurs rôles dans la lymphomagenèse restait à élucider. Nos travaux ont révélé l'implication de la signalisation calcique dans la mort induite par le GA101, un anti CD20 de nouvelle génération actuellement en essai clinique. De plus, nous avons mis en évidence l’implication des protéines Orai1 et STIM1 dans la migration des cellules cancéreuses de LNHB. De manière intéressante, l’implication de ces deux protéines dans la migration cellulaire est calcium indépendante, suggérant donc un nouveau rôle de ces protéines. Enfin, grâce à la technologie des capsules cellulaires nous avons établi un nouveau modèle 3D de lymphome mimant la niche tumorale en incluant des cellules du microenvironnement et de la matrice extracellulaire. Ce modèle semble particulièrement pertinent pour le screening de molécules et la compréhension des mécanismes de la lymphomagenèse. Ce travail de thèse révèle ainsi le ciblage de Orai1 et STIM1 comme potentiellement intéressant dans le traitement du LNHB. / B-cell non-Hodgkin lymphomas (BNHL) are the most common hematological malignancies, usually treated with a combination of chemotherapy and anti CD20 immunothérapie. However, 40% of patients are resistant or relapse after treatment. These therapeutic failures could be due to 1) lack of therapeutic targets implicated in several oncogenic processes, 2) lack of relevant preclinical BNHL models for drug screening and lymphomagenesis studies. Calcium is an essential second messenger involved in various cell functions. In B cells, calcium entry is mainly due to Orai1 and STIM1 proteins, both of which have been associated with oncogenesis on solid tumors. However, their role in lymphomagenesis still remains to be elucidated. Our work shows that calcium signaling in BNHL cells participates in cell death induced by GA101, a novel anti-CD20 monoclonal antibody. We also demonstrate that Orai1 and STIM1 play a role in BNHL cell migration. Interestingly, both proteins controlled cell migration in a calcium-independent manner, suggesting a new role for these proteins. Finally, using cellular capsule technology, we established a new BNHL 3D model mimicking tumoral niche by including extracellular matrix and stromal cells. This new model could be used for drug screening and understanding lymphomagenesis. In summary, this work suggests that targeting of Orai1 and STIM1 is promising for BNHL treatment.

Page generated in 0.0597 seconds