1 |
Electrochemical study of 3D graphene composites and the creation of ultralight 3D SiCChabi, Sakineh January 2015 (has links)
This research fabricated and tested various graphene-related 1D, 2D and 3D materials. We described how using specifically designed graphene foam (GF) as templates can transform its unique structures and excellent properties to new materials. Graphene, GF, Polypyrrole (PPY), Polyaniline (PANI), PPY-GF, PANI-GF, SiC foam, SiC nanowires and SiC nanoflakes will be described in this thesis. The chemical vapour deposition method was used to produce graphene and GFs. PPY-GF, PPY, PANI and PANI-GF were prepared by both chemical and electrochemical (Chronopotentiometry) methods. SiC foams were produced by a low-cost carbothermal reduction of SiO with GF, and then the SiC nanoflakes were separated from SiC nanowires and purified via a multistep sonication process. The synthesised materials were characterised by a variety of techniques such as SEM, EDX, XRD, TEM, Raman, AFM and TGA. The electrochemical properties of the materials were measured in a three electrode cell using cyclic voltammetry (CV), galvanostatic charge-discharge and A.C impedance spectroscopy techniques. The mechanical properties of the GF and SiC foams were investigated by conducting compression tests under in-situ SEM imaging. The as-produced graphene in this research was few layer graphene with layer number varies from 2 to 15. The GFs was found to be extremely light weight with an average density value of 5 mg cm-3. Using GF as electrode materials for supercapacitors, we obtained 100% capacity retention after 10,000 of charge-discharge cycles. The PPY-GF composite electrode exhibited an outstanding specific capacitance of 660 Fg-1, which is superior to the performance of most of the existing PPY-CNT, PPY-graphite and PPY-Graphene electrodes reported to date. In contrast to the PPY which shows a big structure degradation and a 30% capacity loss after only hundreds of CV cycles, the PPY-GF composite showed nearly 100% capacity retention after 6,000 cycles of charge-discharge. Our post-test characterisations showed no structural loss for the GF and PPY-GF. The excellent pseudocapacitive performance of the electrodes was found to be related to three key parameters: the open porosity feature of the GF which provides short pathways for ion diffusion and charge transportation, the dual charge storage mode in the composite, and the excellent mechanical properties of the GF. Due to its high flexibility and void spaces, the GF played successfully the role as a holder and stabilizer for the electroactive materials in protecting them from any structural degradation during the repeated ion intercalation-de-intercalation processes. In the SiC project, we have successfully created extremely light-weighted SiC foams with a density range of 9-20 mg cm-3, with various shapes, by using the GF as templates. These foams are the lightest reported SiC structures, and they consist of hollow trusses made from 2D SiC and long 1D SiC nanowires growing from the trusses, edges and defect sites. The 1D SiC nanowires, being confirmed as 3C-structure, appeared in a variety of shapes and sizes and are highly flexible; the 2D SiC is hexagonal, and upon breakup the resulting 2D nanoflakes have an average size of 2 µm and a thickness value of 2-3 nm which is 5-9 layers of SiC. They, to the best of our knowledge, are probably the thinnest and largest reported SiC flakes. Ultimately, in this research we have successfully produced two extremely lightweight and simultaneously strong foams: the GF and SiC foam. We have explored the GFs by efficiently addressing a key issue in the cycle life of energy storage devices, by creating an ideal architecture of such 3D GF-based electrodes. We have developed a completely novel 3D SiC structure made from continuously linked 2D layered SiC reinforced with 1D SiC nanowires. In-situ compression studies have revealed that both the GF and SiC foams can recover significantly, up to 85% in the case of GF, after compression strain exceeding 70%. The SiC foam did not experience any dramatic failure under the compression loads, as do in conventional ceramics. Compared with most existing lightweight foams of similar density, the present 3D SiC exhibited superior compression strengths and an significantly enhanced strength-to-weight ratio.
|
2 |
CVD Synthesis and Characterization of 3D Shaped 3D Graphene (3D2G)Kondapalli, Vamsi Krishna Reddy January 2021 (has links)
No description available.
|
3 |
Effects of Neutron and Gamma Radiation on Carbon Nanotubes and Three-Dimensional Graphene SheetsGorthy, Rukmini 10 June 2016 (has links)
No description available.
|
4 |
3D Structured Graphenes as (Photo)CatalystsGarcía Mulero, Ana 20 March 2023 (has links)
[ES] En la actualidad, el elevado consume energético y el aumento de la concentración de CO2 en la atmósfera han hecho necesaria la búsqueda de nuevas opciones para los procesos actuales. Una respuesta ha sido el aprovechamiento de la radiación solar para producir H2 a partir de la ruptura fotocatalítica del agua o la reducción del CO2 emulando a la naturaleza. Para ello, se propone el uso de materiales basados en carbono, de mayor abundancia y accesibilidad que los metales y óxidos metálicos.
Además, un punto a tener en cuenta es la morfología, ya que haciendo uso del denominado "efecto de confinamiento" de los materiales 3D mejora notablemente la capacidad catalítica de los mismos.
Es por esto por lo que, en la presente Tesis Doctoral, se ha desarrollado la posibilidad de obtener materiales grafénicos con estructuración tridimensional, presentado microporos en los que tiene lugar dicho efecto de confinamiento. De este modo, estos materiales son capaces de promover tanto la reacción de oxidación de la benzilamina como la reacción fotocatalítica de obtención de H2 a partir de agua y la de reducción de CO2. Concretamente, los materiales se han obtenido, por un lado, mediante el uso de agentes plantilla y la capacidad de recubrimiento de polisacáridos naturales como es el quitosano; y por otro, sin agentes plantilla, aprovechando la estructura de las ciclodextrinas como precursores del grafeno microporoso. Además, estos últimos materiales se han dopado con heteroátomos, en concreto fósforo, para mejorar la actividad fotocatalítica de estos materiales microporosos basados en carbono. / [CA] En l'actualitat, l'elevat consum energètic i l'augment de la concentració de CO2 en l'atmosfera han fet necessària la cerca de noves opcions per als processos actuals. Una resposta ha sigut l'aprofitament de la radiació solar per a produir H2 a partir de la ruptura fotocatalítica de l'aigua o la reducció del CO2 emulant a la naturalesa. Per a això, es proposa l'ús de materials basats en carboni, de major abundància i accessibilitat que els metalls i òxids metàl·lics.
A més, un punt a tindre en compte és la morfologia, ja que fent ús del denominat "efecte de confinament" dels materials 3D millora notablement la capacitat catalítica d'aquests.
És per això que, en la present Tesi Doctoral, s'ha desenvolupat la possibilitat d'obtindre materials grafénics amb estructuració tridimensional, presentat microporus en els quals té lloc aquest efecte de confinament. D'aquesta manera, aquests materials són capaços de promoure tant la reacció d'oxidació de la benzilamina com la reacció fotocatalítica d'obtenció d'H2 a partir d'aigua i la de reducció de CO2. Concretament, els materials s'han obtingut, d'una banda, mitjançant l'ús d'agents plantilla i la capacitat de recobriment de polisacàrids naturals com és el quitosan; i per un altre, sense agents plantilla, aprofitant l'estructura de les ciclodextrines com a precursors del grafé microporós. A més, aquests últims materials s'han dopat amb heteroàtoms, en concret fòsfor, per a millorar l'activitat fotocatalítica d'aquests materials microporosos basats en carboni. / [EN] Nowadays, the high energy consumption and the increase of the concentration of CO2 in the atmosphere have made it necessary to search for new options for the current processes. One possible answer has been the use of solar radiation to produce H2 from the overall photocatalytic water splitting or the photoreduction of CO2, by emulating nature. In this context, carbon-based materials, which are more abundant and accessible than metals and metal oxides, are proposed as catalysts.
In addition, a point to take into account is the morphology, since making use of the so-called "confinement effect" of 3D materials significantly improves their catalytic capacity.
This is the reason why, in this Doctoral Thesis, the possibility of obtaining graphene materials with three-dimensional structuring has been developed, presenting micropores in which this confinement effect takes place. In this way, these materials have been able to promote both the oxidation reaction of benzylamine and the photocatalytic reaction of obtaining H2 from water and the reduction of CO2. Specifically, the materials have been obtained, on the one hand, by using template agents and the coating capacity of natural polysaccharides such as chitosan; and on the other hand, without template agents, taking advantage of the structure of cyclodextrins as precursors of microporous graphene. In addition, the latter materials have been doped with heteroatoms, specifically phosphorus, to improve the photocatalytic activity of these carbon-based microporous materials. / El autor agradece el proyecto PID2021-126071OB-C21 financiado
por MICINN/AEI /10.13039/501100011033/ a FEDER Una manera de hacer
Europa, por la financiación recibida, y al Ministerio por la FPU que me
ha permitido desarrollar estos 4 años de trabajo. / García Mulero, A. (2023). 3D Structured Graphenes as (Photo)Catalysts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192544
|
Page generated in 0.03 seconds