Spelling suggestions: "subject:"3bioprinting"" "subject:"3imprinting""
1 |
Effect of Laminin derived IKVAV Motif and Ultrashort Self- Assembling Peptides on Cell Growth and Organoid Formation of Colorectal Cancer Stem Cells: Bioprintability AssessmentJalih, Fatimah 11 1900 (has links)
Over the past decades, many studies have been conducted to generate in vitro
tissue systems that help understanding tissue development and disease
progression. Hydrogel scaffolds have been frequently used in creating such
models. Self-assembling peptide hydrogels are functional in providing the cells a
scaffold that supports cell proliferation, however, organoid and lumen formation
remains a challenge. Hydrogels can be synthesized and modified based on the
essential physiological properties, which can be achieved by altering the
chemical composition of the initial material. Thus, in this study, we test the effect
of the laminin-derived IKVAV motif on ultrashort self-assembling peptide in
relation to cell proliferation and lumen formation in colorectal cancer stem cells.
Further, we test the printability of the modified peptide. The modification of
ultrashort peptide serves the purpose of providing signals to direct cell adhesion,
differentiation, and lumen formation. One particular combination of peptides
showed the formation of colorectal organoids containing lumen of outperforming
characteristics as compared to the others, also in 3D bioprinting.
|
2 |
Design And Implementation of 402nm Laser Adapter for Simultaneous 3D Printing of GelMA Hydrogel ScaffoldsMorris, Lauren 01 January 2023 (has links) (PDF)
3D bioprinting is an emerging field with the potential to reform the process of organ transplantation. The ability to 3D print new organs and tissues would supplement the organ donor shortage and decrease the risk associated with organ rejection. One of the current areas of research focuses on printing cells using hydrogels composed of methacrylated compounds as a scaffolding. One of the chemical means of crosslinking the hydrogels is using the photoinitiator lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) to crosslink with light. The 3D bioprinter in the lab currently has an attachment for a 365nm lamp, however this is cytotoxic to cells. A 405nm laser was designed to mount on the hot tool of the BioAssemblyBot by Advanced Solutions and flash at a specific frequency when sent a signal from the bioprinter. This tool was then tested to determine effective flash frequencies for crosslinking hydrogels.
|
3 |
Determining the effect of structure and function on 3D bioprinted hydrogel scaffolds for applications in tissue engineeringGodau, Brent 30 August 2019 (has links)
The field of tissue engineering has grown immensely since its inception in the late 1980s. However, currently commercialized tissue engineered products are simple in structure. This is due to a pre-clinical bottleneck in which complex tissues are unable to be fabricated. 3D bioprinting has become a versatile tool in engineering complex tissues and offers a solution to this bottleneck. Characterizing the mechanical properties of engineered tissue constructs provides powerful insight into the viability of engineered tissues for their desired application. Current methods of mechanical characterization of soft hydrogel materials used in tissue engineering destroy the sample and ignore the effect of 3D bioprinting on the overall mechanical properties of a construct. Herein, this work reports on the novel use of a non-destructive method of viscoelastic analysis to demonstrate the influence of 3D bioprinting strategy on mechanical properties of hydrogel tissue scaffolds. 3D bioprinting is demonstrated as a versatile tool with the ability to control mechanical and physical properties. Structure-function relationships are developed for common 3D bioprinting parameters such as printed fiber size, printed scaffold pattern, and bioink formulation. Further studies include effective real-time monitoring of crosslinking, and mechanical characterization of multi-material scaffolds. We envision this method of characterization opening a new wave of understanding and strategy in tissue engineering. / Graduate
|
4 |
The effects of bioprinting materials on HEPM cell proliferation and cytokine releaseSwenson, Robert David 01 May 2018 (has links)
Objectives: Three-dimensional (3D) bioprinting is a manufacturing process that incorporates viable cells into a 3D matrix by adding layer upon layer of material. The objectives of this study are to characterize a novel matrix of collagen and hydroxyapatite and to assess the effects of the 3D bioprinting process on cytotoxicity, proliferation rate, and cytokine expression of Homo sapiens palatal mesenchyme (HEPM) cells.
Methods: For this, we prepared a 3D matrix of collagen and hydroxyapatite without and with cells. We used light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to characterize the structure and arrangement of the collagen fibers. We then incubated the matrix with known standards of cytokines to measure adsorption. We assessed the proliferation and viability of HEPM cells in the presence of the 3D construct and after 3D bioprinting. Finally, we assessed the cytotoxicity of this matrix for HEPM cells and assessed its effect on the production of chemokines and cytokines. A one-way fixed effect ANOVA was fit to concentrations of cytokines and pairwise group comparisons were conducted using Tukey’s Honest Significant Differences test (p< 0.05).
Results: The matrix was found to contain interwoven strands of collagen and some hydroxyapatite crystals that did not absorb cytokines except for MIP-1a (p< 0.05). The matrix was found to be non-cytotoxic using an AlamarBlue® assay. We found that the cell proliferation rate was lower when seeded on the 3D construct than in 2D culture. We also found that the proliferation rate was very low for the HEPM cells in the 3D bioprinted constructs. In the presence of the 3D construct, the HEPM cells had similar expression profiles of the cytokines measured (P > 0.05 for GM-CSF, IL-6, IL-8, and RANTES).
Conclusion: 3D-bioprinting has the potential to be used in dentistry as a novel osteogenic bone grafting material. Here we show that a novel matrix of collagen and hydroxyapatite is non-cytotoxic to HEPM cells and does not induce a proinflammatory response.
|
5 |
Untersuchung des zellbiologischen Verhaltens von Fibroblasten in modifizierten Gelatine-Methacrylat basierten Harzen für den volumetrischen Biodruck / Investigation of the cell biological behavior of fibroblasts in modified gelatin-methacrylate based resins for volumetric bioprintingWitteler, Charlotte Marie January 2024 (has links) (PDF)
Was vor einigen Jahren undenkbar erschien, könnte zukünftig möglich sein: Krankes Gewebe mit Gesundem ersetzen, das in vitro mit modernsten Biofabrikationstechniken hergestellt wird. Dabei werden bisherige Grenzen überschritten: Während lichtbasierte Biodruckverfahren wie die Zwei-Photonen-Polymerisation Auflösungen bis in den Nanometerbereich erzielen, ermöglicht der Volumetrische Biodruck (VB) den Druck zentimetergroßer Konstrukte in wenigen Sekunden. Diese Geschwindigkeiten erweisen sich unter Biodruckverfahren als konkurrenzlos und werden erreicht, da das Bioharz nicht konsekutiv, sondern zugleich vernetzt wird. Einschränkend gilt bislang nur der Mangel an geeigneten Bioharzen für den VB. Daher beschäftigt sich vorliegende Arbeit mit der Charakterisierung und Modifikation eines dafür geeigneten Bioharzes: Gelatine-Methacrylat (GelMA). Dank seiner Zusammensetzung ähnelt das etablierte Hydrogelsystem der Extratrazellularmatrix: Der Gelatine-Anteil ermöglicht Biokompatibilität und Bioaktivität durch zelladhäsive sowie degradierbare Aminosäure-Sequenzen. Zugleich können durch photovernetzbare Methacryloyl-Substituenten Konstrukte mit einer Formstabilität bei 37 °C erzeugt werden.
Zunächst wurde das Bioharz zellbiologisch charakterisiert, indem mit der embryonalen Mausfibroblasten-Zelllinie NIH-3T3 beladene GelMA-Zylinder gegossen, photopolymerisiert und kultiviert wurden. Im Verlauf einer Woche wurde die Zytokompatibilität der Gele anhand der Proliferationsfähigkeit (PicoGreen-Assay), des Metabolismus (CCK-8-Assay) und der Vitalität (Live/Dead-Assay) der Zellen beurteilt. Dabei wurden Polymerkonzentrationen von 6 – 8 % sowie GelMA-Harze zweier verschiedener Molekulargewichte verglichen. Alle hergestellten Gele erwiesen sich als zytokompatibel, 6 % ige Gele ließen im Inneren jedoch zusätzlich eine beginnende Zellspreizung zu und ein niedriges GelMA-Molekulargewicht verstärkte die gemessene Proliferation. Die sich anschließende mechanische und physikalische Charakterisierung belegte, dass höher konzentrierte Gele einen größeren E-Modul aufwiesen und damit steifer waren. Eine Modifikation der Gele mit Fibronektin beeinflusste die Zellverträglichkeit weder positiv noch negativ und die Zugabe von Kollagen war wegen Entmischungseffekten nicht bewertbar. Es liegt die Vermutung nah, dass eine weitere Reduktion der Polymerkonzentration und damit Verringerung der Gelsteifigkeit der Schlüssel für mehr Zellspreizung und -wachstum ist. Da jedoch die Druckbarkeit des Bioharzes die weitere Senkung des GelMA-Gehalts limitiert, sollten zunächst Methoden entwickelt werden, welche die Netzwerkdichte des GelMAs anderweitig herabsetzen. / What seemed unthinkable a few years ago could be possible in the future: replacing diseased tissue with healthy tissue produced in vitro using the latest biofabrication techniques. Previous limits are being exceeded: While light-based bioprinting processes such as two-photon polymerization achieve resolutions down to the nanometer range, volumetric bioprinting (VB) makes it possible to print centimeter-sized constructs in just a few seconds. These speeds are unrivaled among bioprinting processes and are achieved because the bioresin is not cross-linked consecutively but simultaneously. The only limitation to date is the lack of suitable bioresins for VB. Therefore, the present work deals with the characterization and modification of a suitable bioresin: gelatine methacrylate (GelMA). Thanks to its composition, the established hydrogel system is similar to the extracellular matrix: The gelatine component enables biocompatibility and bioactivity through cell-adhesive as well as degradable amino acid sequences. At the same time, photo-crosslinkable methacryloyl substituents can be used to produce constructs with dimensional stability at 37 °C.
First, the bioresin was characterized cell biologically by casting, photopolymerizing and culturing GelMA cylinders loaded with the embryonic mouse fibroblast cell line NIH-3T3. Over the course of a week, the cytocompatibility of the gels was assessed based on proliferation capacity (PicoGreen assay), metabolism (CCK-8 assay) and viability (Live/Dead assay) of the cells. Polymer concentrations of 6 - 8 % and GelMA resins of two different molecular weights were compared. All gels produced were found to be cytocompatible, however, 6 % gels additionally allowed incipient cell spreading inside and a low GelMA molecular weight increased the measured proliferation. The subsequent mechanical and physical characterization showed that gels with higher concentration had a higher modulus of elasticity and were therefore stiffer. Modifications of the gels with fibronectin had neither a positive nor negative effect on cell compatibility and the addition of collagen could not be evaluated due to segregation effects. It is reasonable to assume that further reduction in polymer concentration and thus a reduction in gel stiffness is the key to more cell spreading and growth. However, since the printability of the bioresin limits further reduction of the GelMA content, methods should first be developed to reduce the network density of the GelMA in other ways.
|
6 |
3D Microarray: How 3D Bioprinting can Reduce the Growing Cost of Pharmaceutical Drug DevelopmentYen, Terence, Yen 30 August 2017 (has links)
No description available.
|
7 |
Sensing in 3D Printed Neural Microphysiological SystemsHaring, Alexander Philip 06 May 2020 (has links)
The research presented in this dissertation supports the overall goal of producing sensor functionalized neural microphysiological systems to enable deeper fundamental understandings of disease pathology and to provide drug screening and discovery platforms for improved clinical translation. Towards this goal, work addressing three broad objectives has been completed. The first objective was expanding the manufacturing process capabilities for hydrogels and tissues through augmentation of the 3D printing systems and developing novel modeling capabilities. The second objective was to expand the palette of available materials which exhibit the rheological properties required for 3D printing and the mechanical and biological properties required for neural tissue culture. The third objective was to develop sensing capabilities for both monitoring and control of the manufacturing process and to provide non-destructive assessment of microphysiological systems in real-time to quantify the dynamics of disease progression or response to treatment.
The first objective of process improvement was addressed both through modification of the 3D printing system itself and through modeling of process physics. A new manifold was implemented which enabled on-the-fly mixing of bioprinting inks (bioinks) to produce smooth concentration gradients or discrete changes in concentration. Modeling capabilities to understand the transport occurring during both the processing and post-processing windows were developed to provide insight into the relationship between the programmed concentration distribution and its temporal evolution and stability. Vacuum-based pick-and-place capabilities for integration of prefabricated components for sensing and stimulation into the printed hydrogel constructs were developed. Models of the stress profiles, which relate to cell viability, within the printing nozzle during extrusion were produced using parameters extracted from rheological characterization of bioinks.
The second objective was addressed through the development hydrogel bioinks which exhibited yield stresses without the use of rheological modifiers (fillers) to enable 3D printing of free-standing neural tissue constructs. A hybrid bioink was developed using the combination of a synthetic polaxamer with biomacromolecules present in native neural tissue. Functionalization of the biomacromolecules with catechol or methacrylate groups enabled two crosslinking mechanisms: chelation and UV exposure. Crosslinked gels exhibited moduli in the range of native neural tissue and enabled high viability culture of multiple neural cell types. The third objective was addressed through the characterization and implementation of physical and electronic sensors. The resonance of millimeter-scale dynamic-mode piezoelectric cantilevers submerged in polymer solutions was found to persist into the gel phase enabling viscoelastic sensing in hydrogels and monitoring of sol-gel transitions. Resonant frequency and quality factor of the cantilevers were related with the viscoelastic properties of hydrogels through both a first principles approach and empirical correlation.
Electrode functionalized hollow fibers were implemented as impedimetric sensors to monitor bioink quality during 3D printing. Impedance spectra were collected during extrusion of cell-laden bioinks and the magnitude and phased angle of the impedance response correlated with quality measures such as cell viability, cell type, and stemness which were validated with traditional off-line assays. / Doctor of Philosophy / The research presented in this dissertation supports the overall goal of producing sensor functionalized neural microphysiological systems to enable deeper fundamental understandings of disease pathology and to provide drug screening and discovery platforms for improved clinical translation. Microphysiological systems are miniaturized tissue constructs which strive to mimic the complex conditions present in-vivo within an in-vitro platform. By producing these microphysiological systems with sensing functionality, new insight into the mechanistic progression of diseases and the response to new treatment options can be realized. Towards this goal, work addressing three broad objectives has been completed. The first objective was expanding the manufacturing process capabilities for hydrogels and tissues through augmentation of the 3D printing systems and developing novel modeling capabilities. The second objective was to expand the palette of available materials which exhibit both the properties required for 3D printing and the mechanical and biological properties required for neural tissue culture. The third objective was to develop sensing capabilities for both monitoring and control of the manufacturing process and to provide non-destructive assessment of microphysiological systems in real-time to quantify the dynamics of disease progression or response to treatment. Through these efforts higher quality microphysiological systems may be produced benefitting future researchers, medical professionals, and patients.
|
8 |
Entwicklung und Evaluierung neuer Bioreaktorkonzepte für phototrophe MikroorganismenKrujatz, Felix 08 November 2016 (has links) (PDF)
Die Photobiotechnologie nutzt photosynthesegetriebene Bioprozesse zur nachhaltigen Synthese von Wertstoffen und Energieträgern. Diese Bioprozesse rücken vor allem durch die stoffliche Nutzung von CO2 als Kohlenstoff- und Licht als regenerative Energiequelle in den Fokus von Forschung und Entwicklung. Trotz der enormen Vielfalt von geschätzten 500.000 Algenspezies werden zurzeit nur ca. 15 Mikro- und 220 Makroalgen technisch genutzt. Dieser Umstand ist u.a. dem geringen Prozessverständnis und den spezifischen Anforderungen der photobiotechnologische Prozesse an die technischen Systeme geschuldet.
Im Rahmen der vorliegenden Arbeit wurden Kultivierungssysteme für die photosynthetisch aktiven Mikroorganismen Rhodobacter sphaeroides DSM158, Chlamydomonas reinhardtii 11.32b und Chlorella sorokiniana UTEX1230 entwickelt und evaluiert.
Die photofermentative Wasserstoffproduktion mittels R. sphaeroides DSM158 erfolgte in einem eigens dafür konzipierten gerührten Halogen-Photobioreaktor durchgeführt. Im Satzbetrieb wurde der Einfluss des volumetrischen Leistungseintrages (P0/VL) und der mittlere Bestrahlungsstärke (I0) untersucht. Es konnte gezeigt werden, dass R. sphaeroides DSM158 bei einer durchschnittlichen I0 von 2250 W m-2 und einem P0/VL von 0,55 kW m-3 im Satzbetrieb eine maximale Wasserstoffproduktionsrate (rH2) von 195 mL L-1 h-1 erzielt. Das Reaktorsystem wurde mittels optischer Ray Tracing Simulation, einer empirischer Simulation der Strahlungsverteilung und Computational Fluid Dynamics (CFD) charakterisiert, um die Prozessbedingungen für R. sphaeroides DSM158 zu analysieren. Der photofermentative Prozess wurde in ein kontinuierliches Verfahren überführt, welches unter optimalen Bedingungen von I0 = 2250 W m-1, einer Durchflussrate von 0,096 h-1 und einem C:N-Verhältnis von ca. 22,5 eine rH2 von 170,5 mL L-1 h-1 lieferte.
Für Mikroalgen wurden Kultivierungssysteme für Suspensions- und immobilisierte Kulturen entwickelt und charakterisiert. Zur Kultivierung immobilisierter Mikroalgen wurde die Methode des Green Bioprinting etabliert, die auf der 3D-Bioprinting Technologie des Tissue Engineerings beruht. Bei diesem Verfahren werden Algenzellen über einen Extrusionsprozess in ein strukturiertes Hydrogel eingebettet. In vergleichenden Studien zum Wachstum in Suspensionskulturen konnte gezeigt werden, dass die Hydrogelumgebung ideale Bedingungen für das photoautotrophe Wachstum und die Zellviabilität von C. reinhardtii 11.32b und C. sorokiniana UTEX1230 liefert.
Der MicrOLED-Bioreaktor bezeichnet ein miniaturisiertes Flat-Panel-Airlift (FPA)-Bioreaktor-system mit 15 mL Arbeitsvolumen und nichtinvasiver optischer Prozessüberwachung in Bezug auf zellspezifische Parameter (Zelldichte und Fluoreszenz) und Suspensionsparameter (pH, dO2 und dCO2). Hydrodynamische Untersuchungen der miniaturisierten FPA-Kultivierungskammer zeigten vergleichbare und damit skalierbare Eigenschaften zu Labor- und Produktions-FPA-Bioreaktoren. Im Zuge des MicrOLED-Bioreaktors wurden erstmals organische Leuchtdioden für den Einsatz in Photobioreaktoren verwendet und charakterisiert. Die geometrisch komplexen Bioreaktorkomponenten wurden mittels additiver Fertigungstechnologien aus Polyamid hergestellt und erlauben die Integration der optischen Elemente zur Überwachung des Bioprozesses in Echtzeit.
|
9 |
3D bioprinting of vascularized in vitro liver sinusoid modelsAbdelgaber, Rania Taymour 04 November 2022 (has links)
The present thesis aimed to fabricate a liver sinusoid model by combining different components and techniques to closely mimic the physiological microenvironment of the hepatic cells. Since liver is a complex multicellular organ, 3D extrusion bioprinting was employed as well as core-shell 3D bioprinting for creating more complex constructs with relevant physiological microarchitecture to the in vivo liver sinusoid. Figure 1 illustrates the concept of the aimed model fabrication and the combination of components required to achieve this model. To create an initial model, HepG2, a human carcinoma-derived liver cell line was used as a model cell line for hepatocytes. Biocompatible inks based on a printable alginate-methylcellulose (algMC) blend were aimed to be developed for the encapsulation of hepatocytes by functionalization with bioactive molecules to better recapitulate the hepatocytes biochemical microenvironment, supporting cellular functions. Towards tissue complexity, a further aim was to employ core-shell bioprinting to establish a coculture model of hepatocytes and fibroblasts, which acted as supportive cells; by coaxially printing HepG2 encapsulated in the shell with fibroblasts in the core of a single core-shell strand. Different bioinks were investigated as core for the fibroblasts encapsulation, whereby plasma and fibrin were utilized to functionalize the algMC blends with the aim of enhancing the fibroblasts attachment, proliferation and spreading. Moreover, the influence of functionalized core bioinks on the hepatocytes performance and function would be demonstrated, as well as the influence of the coculture with the fibroblasts. As a final step towards integrating vascularized structures in the liver sinusoid model, endothelial cells (EC) were to be cocultured with the supporting fibroblasts in the core of the core-shell constructs to create a triple-culture model with the hepatocytes in the shell. Based on collagen-fibrin matrices, suitable to support angiogenesis, a natural extracellular matrix-like Introduction 5 core bioink, which is independently printable and allows for the printing of stable core-shell vascularized constructs is aimed to be developed. The culture and coculture parameters of the ECs will be optimized and evaluated. Optimization of the shell bioink encapsulating the hepatocytes is aimed to be investigated with the goal of enhancing the HepG2 microenvironment. Printing parameters and crosslinking procedures as well as culture conditions for all the cells were to be optimized for the model. The final triple-culture core-shell printed in vitro model is aimed to characterize the ability of this triple-culture construct to support vascularization by the HUVECs printed in the core, the physiological functions of the hepatocytes printed in the shell bioink, as well as to evaluate the cellular interactions between core and shell compartments. Through engineering and modifying the bioinks which represent the extra-cellular matrix and adjusting the culture conditions for the cells, cell-cell and cell-matrix interactions can be studied in such coculture models, providing new insights towards clinical and therapeutic biomedical applications.:Abbreviations 1
1 Motivation 3
2 Introduction and state of the art 6
2.1 Liver and its microarchitecture 6
2.2 Tissue Engineering 9
2.2.1 Liver Tissue Engineering 9
2.3 From two- to three-dimensional cell cultures 10
2.3.1 2D and 3D hepatocytes coculture models 12
2.4 3D Bioprinting 14
2.4.1 Biomaterial inks and bioinks for 3D bioprinting 15
2.4.2 Core-shell 3D bioprinting 17
2.4.3 3D bioprinting of in vitro liver models 18
3 Materials and methods 20
3.1 Biomaterials for ink preparation 20
3.2 Cell lines used for bioink encapsulation 20
3.3 Cell culture media 21
3.4 3D bioprinting 22
3.5 Characterization assays 23
3.5.1 Rheological and mechanical characterization of the inks and printed scaffolds 23
3.5.2 Characterization of cell viability 23
3.5.3 Characterization of cell metabolic activity 24
3.5.4 Determination of cell number and proliferation 24
3.5.5 Quantitative analysis of hepatocytes functionality 25
3.5.6 Immunostaining 26
3.5.7 Imaging 27
3.5.8 Statistics 28
3.6 Specific experimental procedures and characterizations 28
3.6.1 Bioink development for bioprinting of hepatocytes 28
3.6.1.1 Bioink preparation
3.6.1.2 Bioprinting and crosslinking
3.6.1.3 Rheological and mechanical characterization
3.6.1.4 Biological characterization
3.6.2 Coculture of hepatocytes (HepG2) and fibroblasts (NIH 3T3) in core-shell bioprinted scaffolds
3.6.2.1 Bioink preparation
3.6.2.2 Core-shell bioprinting and crosslinking
3.6.2.3 Rheological and mechanical characterization
3.6.2.4 Biological characterization
3.6.3 Vascularization of bioprinted HepG2-laden constructs
3.6.3.2 Collagen : Fibrin (CF)-based core bioinks preparation and characterization 32
3.6.3.3 Optimization of shell bioink for HepG2 encapsulation 34
3.6.3.4 Influence of shell bioink on endothelial tube formation in the core 35
3.6.3.5 Transwell experiment for analysis of triple-cultures 35
3.6.3.6 Core-shell bioprinting of triple-culture in vitro liver sinusoid model 37
4 Results and Discussion 38
4.1 Bioink development for encapsulation of hepatocytes by 3D bioprinting 38
4.2 Spatially defined pattern of hepatocyte-fibroblast co-culture in a core-shell bioprinted system 46
4.2.1 Establishment of core-shell bioprinting 47
4.2.2 Simultaneous embedding of HepG2 and NIH 3T3 cells in core-shell strand scaffolds 49
4.2.3 Functionalization of the core bioink – enhancing fibroblast network formation 51
4.2.4 Influence of the microenvironment on expression of hepatic marker proteins in the core-shell bioprinted co-culture system 56
4.3 Vascularization strategies of an in vitro bioprinted liver sinusoid model 61
4.3.1 Preliminary investigation of prevascular-tube formation in fibrin gels 63
4.3.2 Optimization of culture conditions for HUVECs pre-vascular network formation 65
4.3.2.1 Collagen : Fibrin composite gels 65
4.3.2.2 Optimization of CF network density and influence of supportive cells on HUVECs pre-vascular network formation 70
4.3.3 Core-shell bioprinting: development of a core bioink to support formation of pre-vascular structures 75
4.3.3.1 Collagen : fibrin-based ink development for printability 75
4.3.3.2 Formation of pre-vascular structures in 3D bioprinted CFG core 83
4.3.4 Optimization of the shell bioink: HepG2 encapsulation in Plasma vs. Matrigel functionalized algMC 85
4.3.5 Vascularization in different shell biomaterial inks 94
4.3.6 Triple-culture of HepG2, HUVECs and NHDFs: analysis of shell and core bioinks in transwell-coculture 100
4.3.7 Core-shell bioprinting of a triple-culture 3D in vitro liver sinusoid model 111
5 Conclusions and Outlook 120
5.1 Bioink development for hepatocytes encapsulation 120
5.2 Establishment of core-shell bioprinting to fabricate a liver sinusoid model 120
5.3 Coculture of hepatocytes with supportive fibroblasts 121
5.4 Establishment of a vascularized liver sinusoid model 121
5.4.1 Optimization of culture conditions for endothelial cells 121
5.4.2 Development of CF-based printable bioink for endothelial cells encapsulation in the core 122
5.4.3 Optimizing hepatocytes encapsulation bioink 124
5.4.4 Establishment of the complex triple-culture liver sinusoid model 124
5.5 Outlook and future prospects 125
Summary 129
Zusammenfassung 132
References 135
List of Figures 157
List of Tables 159
List of publications
|
10 |
Entwicklung und Evaluierung neuer Bioreaktorkonzepte für phototrophe Mikroorganismen: Entwicklung und Evaluierung neuer Bioreaktorkonzepte für phototrophe MikroorganismenKrujatz, Felix 20 June 2016 (has links)
Die Photobiotechnologie nutzt photosynthesegetriebene Bioprozesse zur nachhaltigen Synthese von Wertstoffen und Energieträgern. Diese Bioprozesse rücken vor allem durch die stoffliche Nutzung von CO2 als Kohlenstoff- und Licht als regenerative Energiequelle in den Fokus von Forschung und Entwicklung. Trotz der enormen Vielfalt von geschätzten 500.000 Algenspezies werden zurzeit nur ca. 15 Mikro- und 220 Makroalgen technisch genutzt. Dieser Umstand ist u.a. dem geringen Prozessverständnis und den spezifischen Anforderungen der photobiotechnologische Prozesse an die technischen Systeme geschuldet.
Im Rahmen der vorliegenden Arbeit wurden Kultivierungssysteme für die photosynthetisch aktiven Mikroorganismen Rhodobacter sphaeroides DSM158, Chlamydomonas reinhardtii 11.32b und Chlorella sorokiniana UTEX1230 entwickelt und evaluiert.
Die photofermentative Wasserstoffproduktion mittels R. sphaeroides DSM158 erfolgte in einem eigens dafür konzipierten gerührten Halogen-Photobioreaktor durchgeführt. Im Satzbetrieb wurde der Einfluss des volumetrischen Leistungseintrages (P0/VL) und der mittlere Bestrahlungsstärke (I0) untersucht. Es konnte gezeigt werden, dass R. sphaeroides DSM158 bei einer durchschnittlichen I0 von 2250 W m-2 und einem P0/VL von 0,55 kW m-3 im Satzbetrieb eine maximale Wasserstoffproduktionsrate (rH2) von 195 mL L-1 h-1 erzielt. Das Reaktorsystem wurde mittels optischer Ray Tracing Simulation, einer empirischer Simulation der Strahlungsverteilung und Computational Fluid Dynamics (CFD) charakterisiert, um die Prozessbedingungen für R. sphaeroides DSM158 zu analysieren. Der photofermentative Prozess wurde in ein kontinuierliches Verfahren überführt, welches unter optimalen Bedingungen von I0 = 2250 W m-1, einer Durchflussrate von 0,096 h-1 und einem C:N-Verhältnis von ca. 22,5 eine rH2 von 170,5 mL L-1 h-1 lieferte.
Für Mikroalgen wurden Kultivierungssysteme für Suspensions- und immobilisierte Kulturen entwickelt und charakterisiert. Zur Kultivierung immobilisierter Mikroalgen wurde die Methode des Green Bioprinting etabliert, die auf der 3D-Bioprinting Technologie des Tissue Engineerings beruht. Bei diesem Verfahren werden Algenzellen über einen Extrusionsprozess in ein strukturiertes Hydrogel eingebettet. In vergleichenden Studien zum Wachstum in Suspensionskulturen konnte gezeigt werden, dass die Hydrogelumgebung ideale Bedingungen für das photoautotrophe Wachstum und die Zellviabilität von C. reinhardtii 11.32b und C. sorokiniana UTEX1230 liefert.
Der MicrOLED-Bioreaktor bezeichnet ein miniaturisiertes Flat-Panel-Airlift (FPA)-Bioreaktor-system mit 15 mL Arbeitsvolumen und nichtinvasiver optischer Prozessüberwachung in Bezug auf zellspezifische Parameter (Zelldichte und Fluoreszenz) und Suspensionsparameter (pH, dO2 und dCO2). Hydrodynamische Untersuchungen der miniaturisierten FPA-Kultivierungskammer zeigten vergleichbare und damit skalierbare Eigenschaften zu Labor- und Produktions-FPA-Bioreaktoren. Im Zuge des MicrOLED-Bioreaktors wurden erstmals organische Leuchtdioden für den Einsatz in Photobioreaktoren verwendet und charakterisiert. Die geometrisch komplexen Bioreaktorkomponenten wurden mittels additiver Fertigungstechnologien aus Polyamid hergestellt und erlauben die Integration der optischen Elemente zur Überwachung des Bioprozesses in Echtzeit.
|
Page generated in 0.0902 seconds