1 |
Live 3D-TV Streaming / Levande 3D-TV StreamingNeupane, Bishal, Moazzeni, Pooya January 2012 (has links)
The world is not flat as a pancake. It has height, width and depth. So we should see it even on TV. So far we cannot see three-dimensional programs directly into our TVs. Not even in cinemas with 3D cinema works "for real". For still there the magic sits in those glasses. The glasses of different colors allow distinguishing right and left eye impression tightened so that one sees different images with each eye. That is what creates the illusion of three dimensions. The goal of this thesis is to be on track to change that. Then you should achieve the same feeling without having required glasses, however, with a different technique. Do you remember those pictures that used to accompany the cereal packets? When angled in one direction, it was Donald Duck and angled it the other way it was Mickey Mouse. Our work is in the same way, though not with different images but with different perspectives. Same ribbed surface that existed at the pictures in cereal packets, are used as matter of fact on our 3D TV screen. Depending from which angle you look certain image information is hiding as it falls behind the ribbed surface. It thus separates views through the screen. This thesis project is focused on a prototyping of live 3D TV streaming application where a live video of a scene is viewed on a 3D auto-stereoscopic display that gives two different perspectives, or views, simultaneously. The TV uses a face search (eye tracking) system to set up the television optimal for those who want to see 3D without glasses. During thesis a simple 3D studio was built where the focus has been to show depth perception. For scene capturing two cameras were used. We have found an engineering solution to take pictures simultaneously from the cameras. The input images from two cameras are sent to an analog to digital converter (frame grabber) as two channels of a virtual color camera, which means real time and synchronized capturing in a simple way. The project has several applications written in C++ using various open source libraries, which essentially grab stereo image sequences from cameras using frame grabber, transfer image sequences to other applications via server communication, and display the live video in 3D display by exclusive rendering method. The communications between different applications for the purposes of transmission and receiving of video data is done using socket programming. The results of the project are very promising in which the live video of a scene can be viewed with noticeable depth despite obvious lagging in video timing.
|
2 |
Multi-Person Infrared Pupil Tracking for 3D TV without GlassesAtan, Levent January 2012 (has links)
The success of recent 3-D stereoscopic movies such as Avatar has created a lot of attention for 3-D in the home. Almost all major consumer electronics (CE) manufacturers have launched their 3-D stereoscopic displays in the market. A problem with those solutions is that viewers have to wear glasses. Glasses-free autostereoscopic 3-D displays typically use lenticular lenses or barriers to create multiple views. However these displays suffer from a number of issues: inverted views at viewing cone transitions, cross-talk between views, and need for multi-view content. As Philips Electronics research group, we believe that some of these issues can be reduced by using pupil tracking. In the research process, we began with an extensive literature study on people detection and tracking techniques that helped us to understand the benefits and the shortcomings of different applications. Addition to literature studies, we greatly benefited from constant experimentation with prototypes and the hands-on experience with variety of digital and optical components under different conditions. As a result, we designed a multi-person infrared pupil tracker and multi-view renderer for 3D display to adapt the view rendering in real-time according to viewer’s position. Together with the integration of these two applications, the integrated 3D TV successfully adapts the center view according to position of the viewer and able to provide a smooth transition while the viewer actively changes her position from a notable distance under ambient illumination. However, even though the pupil tracker is implemented for multiple people, because of the time limitation and the complexity of the problem regarding multi-view renderer, the integrated system functions only for one person. Exploring the employed technique, in-depth description and detailed illustration of designed applications and the conclusions drawn from the implemented system; we believe that this paper forms a substantial guidance and show-how source for further research in the field of 3D display and people tracking methods.
|
3 |
Hodnocení vlivu různých aspektů na kvalitu v 3DTV: Subjektivní testy / Assessment influence of the various aspects on the QoE in 3DTV: Subjective testsSlíž, Martin January 2014 (has links)
This thesis studies aspects influencing image quality 3D TV systems. Thesis is focused on comparing TV´s of the same brand with different diagonals and compares the change in perception of the evaluators by this parameter. The basic evaluated parameters are image depth, contrast, color rendition, image crossover and overall impression. Describes the creation of testing sequences for subjective tests, testing and evaluation of testing.
|
Page generated in 0.0292 seconds