1 |
Ramanujan Regular Hypergraphs based on special Affine Bruhat-Tits Buildings / Ramanujan Regular Hypergraphs mit Affine Bruhat-Tits GebäudeSarveniazi, Alireza 20 January 2004 (has links)
No description available.
|
2 |
Holomorphic Vector Bundles on Ruled Surfaces and Their Blowing UpsMatuschke, Andreas 05 June 1998 (has links)
Diese Arbeit ist motiviert durch das allgemeine Interesse an den Modulräumen von basierten SU(r)-Instantonen auf der vierdimensionalen Sphäre und auf der zusammenhängenden Summe von komplexen projektiven Ebenen, welche als Modulräume von gerahmten holomorphen Vektorbündeln auf Aufblasungen von Regelflächen interpretiert werden können. Genauer gesagt, betrachten wir Modulräume von basierten SU(r)-Instantonen auf all denjenigen selbstdualen vierdimensionalen Mannigfaltigkeiten, welche eine Fläche vom Grad 1 enthalten, die selbst wiederum eine Twistorfaser enthält. Dies trifft zum Beispiel für die wohluntersuchte Klasse von LeBrun-Twistorräumen zu. Es erfolgt eine Darstellung des notwendigen Hintergrundes dieses Zusammenhanges. Inspiriert durch Hurtubise's Artikel "Instantons and Jumping Lines" untersuchen wir das lokale Sprungverhalten dieser gerahmten Vektorbündel und führen den Begriff des gerahmten exzeptionellen lokalen Sprunges ein. Wir beschreiben die gerahmten gewöhnlichen und exzeptionellen Sprünge durch Monaden und untersuchen die geometrischen Eigenschaften ihrer feinen Modulräume. Aufbauend auf dieser Untersuchung und den Resultaten von Boyer, Hurtubise, Mann, Milgram und Tian, worin die Atiyah-Jones-Vermutung für basierte SU(r)-Instantonen auf der vierdimensionalen Sphäre bewiesen wird, zeigen wir homologische und homotopische Charge-Stabilität für alle betrachteten Modulräume basierter SU(r)-Instantonen. Darüberhinaus stellen wir eine glatte Kompaktifizierung dieser Modulräume vor. / This work is motivated by the general interest in moduli spaces of based SU(r)-instantons on the four dimensional sphere and on the connected sum of complex projective planes, which can be interpreted as moduli spaces of framed holomorphic vector bundles on blown up ruled surfaces. To be precise, we consider moduli of based SU(r)-instantons over all self-dual four dimensional manifolds, where the twistor fibration contains a surface of degree 1 which itself contains a twistor fibre. This applies for instance to the well-examined class of LeBrun-twistor spaces. We display the necessary background of this relationship. Inspired by Hurtubise's paper "Instantons and Jumping Lines", we study the local jumping behaviour of such framed vector bundles and introduce the concept of framed exceptional local jumps. We describe framed ordinary and exceptional jumps by monads and examine the geometric properties of their fine moduli spaces. Based on this examination and on the results of Boyer, Hurtubise, Mann, Milgram and Tian, where the Atiyah-Jones conjecture for based SU(r)-instantons on the four dimensional sphere is proved, we show homological and homotopical charge stability for all considered moduli of based SU(r)-instantons. Moreover, we present a smooth compactification of these moduli spaces.
|
3 |
Über einparametrische Optimierungsprobleme (spezielle Einbettungen) und einparametrische VariationsgleichungenGómez-Bofill, Walter 28 January 1999 (has links)
In dieser Arbeit werden zwei parametrische Aufgaben untersucht, Optimierungsprobleme und Variationsungleichungen. Beide Probleme werden unter der urspruenglich fuer einparametrische Optimierungsprobleme definierten Regularitaet im Sinne von Jongen, Jonker und Twilt betrachtet. Unter der oben genannten Regularitaet bezueglich Optimierungsproblemen werden zwei spezielle Einbettungen studiert. Ausgehend von der Kenntnis eines inneren Punktes des zulaessigen Bereiches eines Optimierungsproblems P wird eine Einbettung definiert, deren parametrische zulaessige Menge fuer t<1 in Inneren von P ist. Fuer t=0 ist die Loesung trivial und fuer t=1 wird das Problem P erzeugt. Die Erreichbarkeit des Parameterwertes t=1 bei der Benutzung von Kurvenverfolgungsverfahren mit Spruengen wird eroertert. Durch die Unterscheidung der verschiedenen Richtungen in t, in denen ein Rueckkehrpunkt auftreten kann, wird bewiesen, dass die genannte Methode erfolgreich ist (bei erfolgreichen Spruengen). Fuer diese Einbettung wird die Voraussetzung der Regularitaet untersucht und ein Rechtfertigungssatz bewiesen. Durchgefuehrt wird ein kurzer Vergleich mit einer aehnlichen Homotopie in der Literatur. Fuer die zweite untersuchte Einbettung (eine Penalty-Einbettung aus der Literatur) wird ein Satz zur Rechtfertigung der Regularitaetsvoraussetzung bewiesen. Die Regularitaet im Sinne von Jongen, Jonker und Twilt wird fuer den Fall von Variationsungleichungen definiert und die 5 Typen neu beschrieben. Die Unterschiede zu den Typen bei Optimierungsproblemen ergeben sich aus der Tatsache, dass die Symmetrie der Hessematrix der Lagrangefunktion bezueglich x verloren geht. Das erfordert die sorfaeltige Umformulierung einiger Bedingungen. Auss erdem musste bei den Beweisen der lokalen Eigenschaften (geometrische Struktur, Aenderung der charakteristischen Groessen) diese neue Situation beruecksichtigt werden. Ebenfalls wird der generische Charakter dieser Regularitaet nachgewiesen. Aussagen ueber die Existenz verbindender Kurven zwischen t=0 und t=1 unter der Voraussetzung der Regularitaet werden angefuehrt. Die gesamte Betrachtung der genannten Regularitaet fuer einparametrische Variationsungleichungen und die daraus resultierenden Schluss folgerungen liefern einen nuetzlichen Beitrag zur Untersuchung von Variationsungleichungen. / We consider two types of one-parametric problems: optimization problems and variational inequalities. Both are studied in relationship with the regularity approach due to Jongen, Jonker and Twilt (JJT-regularity), which was defined initially only for one-parametric optimization problems. The properties of two special embeddings are analysed under the assumption of JJT-regularity. Given an optimization problem P, the first embedding analysed is defined with use of an interior point of the feasible set. It holds for this embedding, that the parametric feasible set for tglobal approach. Statements concerning the existence of solution curves connecting problems (for instance t=0 and t=1) under the defined regularity are studied in the last section. The consideration of JJT-regularity for the case of variational inequalities is a new and usefull aspect for the study of this problem.
|
4 |
On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry / Über die Resolvente des Laplace-Operators auf Funktionen für degenerierende Flächen endlicher GeometrieSchulze, Michael 13 October 2004 (has links)
No description available.
|
5 |
Das Gitterpunktproblem in der hyperbolischen EbeneThirase, Jan 01 November 2000 (has links)
Es wird sowohl das klassischen Kreisproblem als auch dessen Verallgemeinerung auf geometrisch endliche Fuchssche Gruppen betrachten. Insbesondere werden obere und untere Schranken für die jeweiligen Zählfunktionen angeben. Mit einem Computerprogramm wird die Zählfunktion einer Heckegruppe bestimmt und damit eine Abschätzung ihres Konvergenzexponenten gegeben.
|
6 |
Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posseGauß, Carl Friedrich 01 January 1799 (has links)
No description available.
|
7 |
Associative submanifolds of G2-manifoldsBera, Gorapada 27 November 2023 (has links)
Die hier dargelegte Dissertation ist motiviert durch die Vorschläge von Joyce, Doan und Walpuski zur Definitionen enumerativer Invarianten für G2-Mannigfaltigkeit, durch das Zählen gewisser kalibrierter Untermannigfaltigkeiten, sogenannter assoziativen Untermannigfaltigkeiten.
In Kapitel 1, werde ich Definitionen und grundlegende Fakten über G2-Mannigfaltigkeit und deren assoziative Untermannigfaltigkeit wiederholen. Darüber hinaus erläutere ich die Konstruktion von G2-Mannigfaltigkeit als verdrehte verbundener Summe.
Kapitel 2 schafft die nötige Grundlage für das darauf folgende dritte Kapitel. Hier definiere ich den Modul-Raum der asymptotisch zylindrischen assoziativen Untermannigfaltigkeiten zusammen mit seiner natürlichen Topologie und zeige, dass der Modul-Raum lokal homeomorph zur Urbild-Menge der Null einer glatten Abbildung zwischen zwei endlich-dimensionalen Räu- men ist. In besonderen Fällen ist dieser Modul-Raum eine Lagrangesche Untermannigfaltigkeit des Modul Raums der holomorphen Kurven einer asymptotisch zylindrischen Calabi-Yau Man- nigfaltigkeit.
In Kapitel 3 beweise ich ein Klebe-Theorem für ein Paar von asymptotisch zylindrischen as- soziativen Untermannigfaltigkeiten in einem zusammenpassenden Paar von asymptotisch zylin- drischen G2-Mannigfaltigkeiten. Hiermit konstruiere ich neue geschlossene und starre (rigid) assoziative Untermannigfaltigkeiten in verdrehten verbundenen Summe G2-Mannigfaltigkeiten.
In Kapitel 4 untersuche ich den Modul-Raum der konisch singulären assoziativen Un- termannigfaltigkeiten in G2-Mannigfaltigkeiten. Durch das Umformulieren des Indexes des Operators, der die Deformationstheorie kontrolliert, in bestimmte Stabilität-Indizes des zu- grundeliegenden assoziativen Kegels begründe ich, dass in einem generischen Pfad in dem Raum der ko-geschlossenen G2-Strukturen keine asymptotisch konischen assoziative Unter- mannigfaltigkeiten existieren, die mindestens eine Singularität besitzen, die auf einem Kegel mit Stabiltätsindex größer als eins modeliert werden. Dieses Resultat lässt sich auf alle speziellen Lagrangesche-Kegel außer den Harvey-Lawson-T2-Kegel und die Vereinigung zweier speziellen Lagrangesche-Flächen anwenden. Zusätzlich lässt sich das Ergebnis auch auf alle konischen assoziativen Untermannigfaltigkeiten anwenden, deren zugrundeliegende Verschlingung (link) holomorphe Kurven mit Null-Torsion in S6 sind. Des Weiteren dienen Teile des vierten Kapitels als Grundlage für das darauf folgende Kapitel 5.
Aufgrund einiger Übergangsphänomene entlang eines generischen Pfades von G2-Strukturen, führt das naive Zählen von assoziativen Untermannigfaltigkeiten zu keiner Invariante. Tat- sächlich wurde vermutet, dass a) eine assoziative Untermannigfaltigkeit aus einer assoziativen Untermannigfaltigkeit mit Selbstsschnitt (self-intersection) geboren werden kann, und, dass b) drei assoziative Untermannigfaltigkeiten aus einer konisch singulären assoziativen Un- termannigfaltigkeit, deren Singularität durch den Harvey-Lawson-T2-Kegel modelliert wird, entspringen. In Kapitel 5, beweise ich ein Desingularitätstheorem für konisch singulären assoziative Untermannigfaltigkeit entlang eines Pfades von ko-geschlossenen G2-Strukturen. Somit verifiziere ich Vermutung b) bewiesen und teilweise auch Vermutung a). / The dissertation presented here is motivated from the proposals made by Joyce, Doan and Walpuski to define enumerative invariants of G2-manifolds by counting certain calibrated submanifolds, called associative submanifolds.
In Chapter 1, I review the definitions and basic facts of G2-manifolds and associative submanifolds. Moreover, I explain the construction of G2-manifolds as twisted connected sums. Chapter 2 serves as a necessary groundwork for Chapter 3. Here, I define the moduli space
of asymptotically cylindrical associative submanifolds with its natural topology and prove that the moduli space is locally homeomorphic to the zero set of a smooth map between two finite-dimensional spaces. In the best scenario, this moduli space is a Lagrangian submanifold of the moduli space of holomorphic curves in the asymptotic Calabi-Yau 3-fold.
In Chapter 3, I prove a gluing theorem for a pair of asymptotically cylindrical associative submanifolds in a matching pair of asymptotically cylindrical G2-manifolds. Using this I construct new closed and rigid associative submanifolds of twisted connected sum G2-manifolds.
In Chapter 4, I study the moduli space of conically singular associative submanifolds in G2-manifolds. By reformulating the index of the operator that controls the deformation theory in terms of certain stability-index of the associative cones, I establish that in a generic path of co-closed G2-structures there are no conically singular associative submanifolds that have at least one singularity modeled on a cone of stability-index greater than one. This result applies to all special Lagrangian cones, except the Harvey-Lawson T2-cone and a union of two special Lagrangian planes. Additionally, it applies to all associative cones whose links are null-torsion holomorphic curves in S6. Furthermore, parts of Chapter 4 also serve as a necessary groundwork for Chapter 5.
The naive counting of associative submanifolds does not lead to an invariant due to several transitions that may occur along a generic path of G2-structures. In fact it was conjectured that a) an associative submanifold born out of an associative submanifold with self intersection, and b) three associative submanifolds arise from a conically singular associative submanifold whose singularity is modeled on Harvey-Lawson T2-cone. In Chapter 5, I prove a desingularization theorem for conically singular associative submanifolds along a path of co-closed G2-structures. Consequently, I verify conjecture b) and partially confirm conjecture a).
|
8 |
Higher gap morassesCárdenas, Franqui 26 August 2005 (has links)
Velleman beweist die Konsistenz der Existenz vereinfachte Gap 2 Moraste (ein Begriff gleichwertig zu den ursprünglichen Morasten, geschafft von Jensen). Wir haben einen noch einfachen Begriff des vereinfachten Morastes in der Dissertation vorgeschlagen, Details aufgefüllt und wesentlich auch einen verschiedenen Beweis des Satzes erfunden und zwar in beide Stufe des Forcingverfahrens. Wir benötigen auch keine Squarefunktionereihenfolge (die ganz Kohärenzvoraussetzung fehlt aber ist linear und konfinal) sondern ein ``erratendes'' Verfahren für Sequenze, das nicht fest ist und nicht die ganze Kohärenzbedigung erfüllt wie bei Velleman. Wir hoffen, wir haben so eingelegt die Basis für einen zukunftigen Beweis des allgemeines Falls n in ZFC. / Velleman proved the consistency of the existence of simplified gap 2 morasses (equivalent to the concrete morasses defined by Jensen) using a two stage forcing. We give an essentially different proof of the same result and fill up some details from Velleman's paper which were not clear or imcomplete. In fact the proof uses a simpler definition of simplified gap 2 morasses. We have also eliminated the use of square-like sequences in the second stage, employing a ``guessing'' procedure for sequences which are not fixed and do not satisfy full coherence requirement. With these steps we hope to have laid the foundation for a future proof of gap n morasses in ZFC.
|
9 |
Drinfeld-Moduln und elliptische Garben / Drinfeld modules and elliptic sheavesWiedmann, Stefan 28 October 2004 (has links)
No description available.
|
10 |
Almost sure behavior for increments of U-statistics / Beschreibung der Fluktuation von Zuwächsen für U-StatistikenAbujarad, Mohammed 18 January 2007 (has links)
No description available.
|
Page generated in 0.0636 seconds