• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilité de l'intéraction onde de choc/ couche limite laminaire / Stability of the shock wave/ laminar boundary layer interaction

Bonne, Nicolas 27 March 2018 (has links)
Le phénomène d’interaction onde de choc/couche limite (CL) est omniprésent en aérodynamique. De manière générale, il génère des oscillations basses fréquences qui peuvent être néfastes pour les machines. L’exemple typique est le tremblement de l’onde de choc sur profil d’aile en régime transsonique, dangereux car il peut exciter les modes de structure de l’aile et potentiellement la rompre. Ce type de phénoménologies a été largement étudié en condition de CL amont turbulente, ce qui a donné lieu à des scénarios physiques crédibles et des méthodologies d’étude efficaces, notamment les analyses de stabilité sur champs turbulents moyennés (RANS). Toutefois la technologie laminaire, c’est-à-dire l’utilisation de CL laminaires en vue de réduire la consommation des aéronefs représente un nouveau challenge scientifique sur cette problématique. La physique est en effet fortement impactée par la nature laminaire de la CL, notamment du fait de la faible résilience de celle-ci aux gradients de pression adverses et à la transition turbulente. Cette thèse a ainsi porté les méthodes d’analyse de stabilité sur champ RANSpour les situations de CL laminaire. L’originalité et l'apport de l’étude résident dans la prise en compte des modèles de transition dans l’approchelinéarisée sur champ RANS. Les modèles utilisés (RANS et transition) ont donc été linéarisés afin de réaliser des études de stabilité en perturbant toutes les variables aérodynamiques. La validation de la méthode a été réalisée par comparaison avec des résultats expérimentaux et de simulation (LES) sur deux conifurations d'application. La première configuration est le cas de la réflexion d’un choc oblique sur une plaque plane. La deuxième est celle du choc droit à l’extrados d’un profil en condition transsonique. Ces deux cas sont en condition de CL laminaire à l'amont du choc.Des analyses de stabilité et de résolvent ont été réalisées.Ces approches ont permis de caractériser le comportement d’oscillateur/amplificateur des écoulements en question et d'analyser la physique des instationnarités observées dans les expériences.Le cas de la réflexion de choc est caractérisé par trois fréquences. L'analyse de stabilité montre que celles-ci ne correspondent pas à des modes globaux instables mais à une dynamique d'amplificateur de l'écoulement. L'analyse de résolvent identifie bien ces trois fréquences. L’analyse des réponses optimales, couplée à une analyse de stabilité locale, a ensuite permis de proposer des scénarios physiques de ces dynamiques.Dans le cas du choc droit sur profil en régime transsonique, l'écoulement apparaît globalement instable. Deux modes d'instabilité sont identifiés. Le premier à basse fréquence correspond au phénomène de tremblement observé en conditions turbulentes. Le deuxième apparaît à plus haute fréquence, et correspond à un mode d'oscillation de la bulle de séparation présente sous le pied de choc.Plus largement, la thèse permet de suggérer que certaines dynamiques dans ce type d’interaction procèdent de mécanismes similaires liés à la respiration de la bulle de séparation laminaire. / The shock wave boundary layer (BL) interaction phenomenon is ubiquitous in aerodynamic. In general this interaction generates some low frequency oscillations which can be disastrous for the machines. The typical example is the buffet phenomenon on an airfoil in transonic conditions. Buffet is dangerous since its low frequency can excite the structural modes of the airfoil and break it. The phenomenology has been wildly studied when the incoming BL is turbulent. These studies have derived several credible scenarii and efficient methodologies to capture its dynamic, especially the stability analysis tools on an averaged turbulent flow (RANS). However laminar technologies, the use of laminar BL to reduce the fuel consumption of planes, represent a new scientific challenge on this problematic. In fact, the physic of the interaction is importantly impacted by the laminar nature of the BL especially because of its weak resilience to an adversed pressure gradient and of the transition to turbulence.The thesis deals with the methodologies for the stability analysis on a RANS base flow in the case of a laminar BL. The originality and the contribution of this work have been to take into account a transition criteria in the linearised dynamic on a RANS base flow. The model used (RANS and transition) have then been linearized in order to make a stability analysis which take into account all the aerodynamic varaibles. The validation of this methodology has been made by comparison to expermient and simulation (LES) on two configurations of application. The first one is a weak reflected shock wave on a flat plate. The second one is the strong shock around an airfoil in a transonic regime. In both cases the incoming BL is laminar.Stability and resolvent analysis have been made. These approches have been able to caratirized the ocillator/noise amplifier behavior of the flow and to enabled a physical analysis of the unsteadinesses observed in the experiments.The case of the reflected shock wave is caracterized by three frequencies. The stability analysis shows that they don't correspond to globally unstable modes but to a noise amplifier behavior of the flow. The resolvent analysis identifies the three frequencies. The analysis of the optimal response, coupled with a local stability analysis, enables to proposed physical scenarii of these dynamics.In the case of the strong shock on an airfoil in transonic regime, the flow is globally unstable. Two unstable modes have been identified. The first one, at low frequency, correspond to the buffet phenomenon also observed in the turbulent case. The second one appears at higher frequency and correspond to the oscillation of the separation bubble formed at the feet of the shock.More generally, this thesis suggests that some dynamics of these two interactions result from the same mecanism linked to the breathing motion of the laminar separation bubble.
2

Stabilité d'une onde de gravité interne, analyse locale, globale et croissance transitoire. / Stability of an internal gravity wave, local, global analysis and transient growth.

Lerisson, Gaétan 06 April 2017 (has links)
Dans les océans profonds linéairement stratifiés, la déstabilisation des ondes de gravité internes est importante car elle contribue probablement au mélange turbulent et à la circulation thermohaline.À l'aide de simulations numériques directes, nous créons un faisceau d'onde interne progressive. Cette situation est équivalente à une onde produite par l'oscillation de la marée sur une topographie sous-marine. Nous retrouvons les résultats expérimentaux obtenus par cite{Bourget13} : le faisceau se déstabilise en un mode petite échelle. Nous regardons l'effet d'un écoulement horizontal moyen sur cette instabilité en prenant soin d'abaisser la fréquence de forçage afin de compenser l'effet doppler et de conserver localement la même onde. Un cas limite apparaît lorsque le forçage devient stationnaire, ce qui équivaut à une onde de sillage issue d'un écoulement constant au dessus d'une topographie.Les écoulements à petite vitesse voient une instabilité petite échelle similaire au cas marée alors que les écoulement intermédiaires restent stables. Les écoulements plus rapides (jusqu'au cas sillage) voient, par contre, une instabilité bien plus grande échelle que celle dans le cas marée. Cette sélection d'échelle est robuste aux variations du nombre de Froude, de Reynolds, de la taille du faisceau ou de l'angle de l'onde.Nous montrons que ces instabilités peuvent être décrites comme des triades résonantes et que les différentes échelles correspondent à différentes branches triadiques. Nous confirmons la présence de cas stables pour des vitesses intermédiaires en calculant les modes propres comme des modes de Floquet à l'aide d'un algorithme d'Arnoldi--Krylov, et en montrant qu'ils sont associés à des taux de croissance négatifs.Le cas sillage est instable et nous le stabilisons par une méthode deselective frequency damping cite{Akervik06} afin d'obtenir un écoulement de base stationnaire autour duquel nous calculons les perturbations optimales qui maximisent l'énergie totale à différents horizons temporels. Pour des horizons courts, la perturbation optimale est petite échelle alors que pour des horizons longs, elle est grande échelle et converge vers la solution non-linéaire obtenue précédemment. Les horizons courts voient une instabilité triadique petite échelle advectée par l'écoulement et les horizons longs développent une instabilité d'une branche triadique grande échelle capable de se maintenir dans le faisceau malgré l'écoulement.Nous interprétons cette sélection de mode par le biais de la théorie des instabilités absolue ou convective. Dans le cas de l'onde de sillage l'instabilité grande échelle est absolue alors que la petite échelle est convective (et domine la croissance transitoire puisque son taux de croissance local est supérieur). Les rôles s'inversent dans le cas marée et l'instabilité petit échelle devient absolue alors que la grande échelle est convective. Nous confirmons cette hypothèse en calculant la réponse impulsionnelle d'une onde plane monochromatique dans un domaine 2Dpériodique. L'évolution spatio-temporelle d'une perturbation localisée en temps et en espace montre la formation de trois paquets d'onde, chacun étant associé à une branche triadique que nous identifions par une extension de la théorie triadique prenant en compte un désaccordage cite{McEwan77} et permettant de calculer la vitesse de groupe des sommets des paquets. En calculant ensuite le taux de croissance absolu le long de rayons à x/t et z/t constant, nous validons notre hypothèse. / Internal gravity waves that exist in a continuously stratified fluid are particularly important in the ocean. They transport energy and are thought to generate turbulent mixing, which contribute to the deep ocean circulation.We generate an internal wave beam that propagates in a continuously stratified fluid with direct numerical simulations. This situation is equivalent to a tidal wave, where the tidal flow oscillates over a topography and generates a wave. Experimental results obtained by cite{Bourget13} are recovered, ie. the beam destabilizes into a small scale mode. We consider the effect of an horizontal mean flow on the instability and lower the forcing frequency in order to compensate for the doppler effect and to keep locally the same wave. A limit case appears when the forcing becomes stationary. This case is equivalent to a lee wave appearing when a stratified fluid flows over a topography.For small mean flow, small scale instabilities develop as in the tidal case. The beam then stabilizes at intermediate mean flows and destabilizes again for increasing flow speed. At this second threshold, down to the lee wave case, the instability is of much larger scale than for the tidal case. Varying the Reynolds number, the Froude number, the wave angle or the beam size doesn't affect the instability scale selection : a small scale instability in the tidal regime, and large scale instability in the lee regime.We show that the instability mechanism may be interpreted using the triadic instability. Scale selection corresponds to different branches of triadic resonance. We confirm the presence of a stability region for intermediate value of the mean advection velocity by computing the linear eigenmode as Floquet mode with an Arnoldi-Krylov technique and show that the leading eigenmode has a negative growth rate.In the lee wave, case the flow is unstable and a selective frequency damping method cite{Akervik06} is used to compute a steady base flow. We then implement a linear direct-adjoint method to compute the optimal perturbations that maximizes the total energy at different time horizons. At short time horizon, the optimal perturbation is small scale while at large time the perturbation switches to a large scale solution and converges to the large scale mode observed through the nonlinear simulations. Short time transients correspond to the small scale triadic instability advected by the flow whereas the long time large scale instability corresponds to large scale branch of the triadic instability that is able to sustain the flow.We propose an interpretation of the selection of these different instabilities in term of absolute and convective instability. In the case of the lee wave, the large scale instability is absolute whereas the small scale instability is convective (and dominates the short time transient growth because it has a larger local growth rate). When the mean flow is varied, the properties of small scale and large scale instabilities exchange: in the tidal case the short scale instability is absolute and the large scale convective. This conjecture is confirmed by computing the impulse response around a plane monochromatic internal gravity wave in an extended two dimensional periodic domain. The spatio temporal evolution of a perturbation localized in space and time points out the formation of three different wave packets corresponding to different branches of triadic instability. Using the triadic theory with finite detuning cite{McEwan77},we derive the group velocity at the maximum growth rate of the three different branches of triadic instability and find a good agreement with the velocity of the three wave paquet maxima in the impulse response. Analyzing the impulse response along rays, i.e. at x/t and z/tconstant, we compute the absolute growth rate along all possible rays and validate our conjecture.
3

Simulation numérique d'ondes de choc dans un milieu bifluide : application à l'explosion vapeur / Numerical simulation of shock waves in a bi-fluid flow : application to steam explosion

Corot, Théo 11 September 2017 (has links)
Cette thèse s'intéresse à la simulation numérique de l'explosion vapeur. Ce phénomène correspond à une vaporisation instantanée d'un volume d'eau liquide entraînant un choc de pression. Nous nous y intéressons dans le cadre de la sûreté nucléaire. En effet, lors d'un accident entraînant la fusion du cœur du réacteur, du métal fondu pourrait interagir avec de l'eau liquide et entraîner un tel choc. On voudrait alors connaître l'ampleur de ce phénomène et les risques d'endommagements de la centrale qu'il implique. Pour y parvenir, nous utilisons pour modèle les équations d'Euler dans un cadre Lagrangien. Cette description a l'avantage de suivre les fluides au cours du temps et donc de parfaitement conserver les interfaces entre l'eau liquide et sa vapeur. Pour résoudre numériquement les équations obtenues, nous développons un nouveau schéma de type Godunov utilisant des flux nodaux. Le solveur nodal développé durant cette thèse ne dépend que de la répartition angulaire des variables physiques autour du nœud. De plus, nous nous intéressons aux changements de phase liquide-vapeur. Nous proposons une méthode pour les prendre en compte et mettons en avant les avantages qu'il y a à l'implémentation de ce phénomène dans un algorithme Lagrangien. / This thesis studies numerical simulation of steam explosion. This phenomenon correspond to a fast vaporization of a liquid leading to a pressure shock. It is of interest in the nuclear safety field. During a core-meltdown crisis, molten fuel rods interacting with water could lead to steam explosion. Consequently we want to evaluate the risks created by this phenomenon.In order to do it, we use Euler equations written in a Lagrangian form. This description has the advantage of following the fluid motion and consequently preserves interfaces between the liquid and its vapor. To solve these equations, we develop a new Godunov type scheme using nodal fluxes. The nodal solver developed here only depends on the angular repartition of the physical variables around the node.Moreover, we study liquid-vapor phase changes. We describe a method to take it into account and highlight the advantages of using this method into a Lagrangian framework.

Page generated in 0.0183 seconds