• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation numérique et modélisation de l'ablation liquide / Numerical approximation and modelling of liquid ablation

Peluchon, Simon 28 November 2017 (has links)
Lors de sa rentrée dans l’atmosphère d’une planète, un engin spatial subit un échauffement important dû aux frottements des gaz atmosphériques sur la paroi. Cette élévation de température conduit à une dégradation physico-chimique du bouclier thermique de l’objet constitué de matériaux composites. Un composite est constitué de divers matériaux qui s’ablatent différemment. Dans cette thèse, nous nous intéressons essentiellement à la fusion d’un matériau durant sa phase de rentrée atmosphérique. Nous sommes donc en présence de trois phases : solide, liquide et gaz. Pour simuler ce phénomène, des méthodes numériques robustes ont été mises au point pour calculer l’écoulement diphasique compressible autour de l’objet. Le couplage entre le solide et l’écoulement fluide a aussi été étudié. Les méthodes numériques développées durant cette thèse sont basées sur une approche volumes finis. Une stratégie de décomposition d’opérateurs est utilisée pour résoudre le modèle diphasique à cinq équations avec les termes de dissipation modélisant l’écoulement fluide. L’idée principale de cette décomposition d’opérateurs est de séparer les phénomènes acoustiques et dissipatifs des phénomènes de transport. Un traitement implicite de l’étape acoustique est réalisé tandis que l’étape de transport est résolue explicitement. Le schéma semi-implicite global est alors très robuste, conservatif et préserve les discontinuités de contact. Les conditions d’interface entre les domaines fluide et solide sont déduites des bilans de masse et d’énergie à la paroi. Le front de fusion est suivi explicitement grâce à une formulation ALE des équations. La robustesse de l’approche et l’apport de la formulation semi-implicite sont finalement démontrés grâce à des expériences numériques mono et bidimensionnelles sur maillages curvilignes mobiles. / During atmospheric re-entry phase, a spacecraft undergoes a sudden increase of the temperature due to the friction of atmospheric gases. This rise drives to a physical-chemical degradation of the thermal protective system of the object made of composite material. A composite is made of several materials with ablates differently. In this thesis, we mainly focus on the melting of an object during its re-entry phase. Therefore there are three phases: solid, liquid and gas phases. In order to simulate this phenomenon, robust numerical methods have been developed to compute a compressible multiphase flow. The coupling strategy between the solid and the fluid have also been studied. Solvers developed in the present work are based on Finite Volume Method. A splitting strategy is used to compute compressible two-phase flows using the five-equation model with viscous and heat conduction effects. The main idea of the splitting is to separate the acoustic and dissipative phenomena from the transport one. An implicit treatment of the acoustic step is performed while the transport step is solved explicitly. The overall scheme resulting from this splitting operator strategy is very robust, conservative, and preserves contact discontinuities. The boundary interface condition between the solid and the multiphase flow is enforced by mass and energy balances at the wall. The melting front is tracked explicitly using an ALE formulation of the equations. The robustness of the approach and the interest of the semi-implicit formulation are demonstrated through numerical simulations in one and two dimensions on moving curvilinear grids.
2

Simulation numérique d'ondes de choc dans un milieu bifluide : application à l'explosion vapeur / Numerical simulation of shock waves in a bi-fluid flow : application to steam explosion

Corot, Théo 11 September 2017 (has links)
Cette thèse s'intéresse à la simulation numérique de l'explosion vapeur. Ce phénomène correspond à une vaporisation instantanée d'un volume d'eau liquide entraînant un choc de pression. Nous nous y intéressons dans le cadre de la sûreté nucléaire. En effet, lors d'un accident entraînant la fusion du cœur du réacteur, du métal fondu pourrait interagir avec de l'eau liquide et entraîner un tel choc. On voudrait alors connaître l'ampleur de ce phénomène et les risques d'endommagements de la centrale qu'il implique. Pour y parvenir, nous utilisons pour modèle les équations d'Euler dans un cadre Lagrangien. Cette description a l'avantage de suivre les fluides au cours du temps et donc de parfaitement conserver les interfaces entre l'eau liquide et sa vapeur. Pour résoudre numériquement les équations obtenues, nous développons un nouveau schéma de type Godunov utilisant des flux nodaux. Le solveur nodal développé durant cette thèse ne dépend que de la répartition angulaire des variables physiques autour du nœud. De plus, nous nous intéressons aux changements de phase liquide-vapeur. Nous proposons une méthode pour les prendre en compte et mettons en avant les avantages qu'il y a à l'implémentation de ce phénomène dans un algorithme Lagrangien. / This thesis studies numerical simulation of steam explosion. This phenomenon correspond to a fast vaporization of a liquid leading to a pressure shock. It is of interest in the nuclear safety field. During a core-meltdown crisis, molten fuel rods interacting with water could lead to steam explosion. Consequently we want to evaluate the risks created by this phenomenon.In order to do it, we use Euler equations written in a Lagrangian form. This description has the advantage of following the fluid motion and consequently preserves interfaces between the liquid and its vapor. To solve these equations, we develop a new Godunov type scheme using nodal fluxes. The nodal solver developed here only depends on the angular repartition of the physical variables around the node.Moreover, we study liquid-vapor phase changes. We describe a method to take it into account and highlight the advantages of using this method into a Lagrangian framework.
3

Modélisation et méthodes numériques pour l'étude du transport de particules dans un plasma chaud / Modelling and numerical methods for the study of particle transport in a hot plasma

Guisset, Sébastien 23 September 2016 (has links)
Les modèles aux moments angulaires constituent des descriptions intermédiaires entre les modèles cinétiques et les modèles fluides. Dans ce manuscrit, les modèles aux moments angulaires basés sur un principe de minimisation d'entropie sont étudiés pour des applications en physique des plasmas. Ce mémoire se découpe en trois parties. La première est une contribution à la modélisation en physique des plasmas à travers le formalisme des modèles aux moments angulaires. Dans celle-ci, le domaine de validité de ces modèles est étudié en régimes non-collisionels. Il est également montré que les opérateurs de collisions proposés pour le modèle M1 permettent de retrouver des coefficients de transport plasma précis. La deuxième partie de ce document concerne la dérivation de méthodes numériques pour l'étude du transport de particules en temps long. Dans ce cadre, des schémas numériques appropriés pour le modèle M1, préservant l'asymptotique, sont construits et validés numériquement. La troisième partie représente un premier pas significatif vers la modélisation multi-espèces. Ici, le modèle aux moments angulaire M1, construit dans un référentiel mobile, est appliqué à la dynamique des gaz raréfiés. Les propriétés de ce modèle sont détaillées, un schéma numérique est proposé et une validation numérique est menée. / Angular moments models represent alternative descriptions situated in between the kinetic and the fluid models. In this work, angular moments models based on an entropy minimisation principle are considered for plasma physics applications. This manuscript is organised in three parts. The first one is a contribution to plasma physics modelling within the formalism of angular moments models. The validity domain of angular moments models in collisionless regimes is studied. It is also shown that the collisional operators proposed for the M1 angular moments model enable to recover accurate plasma transport coefficients. The second part of this document deals with the derivation of numerical methods for the long timescales particle transport. Appropriate asymptotic-preserving numerical schemes are designed for the M1 angular moments model and numerical validations are performed. The third part represents a first important step toward multi-species modelling. The M1 angular moments model in a moving frame is introduced and applied to rarefied gas dynamics. The model properties are highlighted, a numerical scheme is proposed and a numerical validation is carried out.

Page generated in 0.0861 seconds