Spelling suggestions: "subject:"asymptoticpreserving schemes"" "subject:"cryopreserving schemes""
1 |
Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles / Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equationsRambaud, Amélie 05 December 2011 (has links)
Nous étudions plusieurs aspects d'équations aux dérivées partielles multi-échelles. Pour trois exemples, la présence de multiples échelles, spatiales ou temporelles, motive un travail de modélisation mathématique ou constitue un enjeu de discrétisation. La première partie est consacrée à la construction et l'étude d'un système multicouche de type Saint-Venant pour décrire un fluide à surface libre (océan). Son obtention s'appuie sur l'analyse des échelles spatiales, précisément l'hypothèse « eau peu profonde ». Nous justifions nos équations à partir du modèle primitif et montrons un résultat d'existence locale de solution. Puis nous proposons un schéma volumes finis et des simulations numériques. Nous étudions ensuite un problème hyperbolique de relaxation, inspiré de la théorie cinétique des gaz. Nous construisons un schéma numérique via une stratégie préservant l'asymptotique : nous montrons sa convergence pour toute valeur du paramètre de relaxation, ainsi que sa consistance avec le problème à l'équilibre local. Des estimations d'erreurs sont établies et des simulations numériques sont présentées. Enfin, nous étudions un problème d'écoulement sanguin dans une artère avec stent, modélisé par un système de Stokes dans un domaine contenant une petite rugosité périodique (géométrie double échelle). Pour éviter une discrétisation coûteuse du domaine rugueux (l'artère stentée), nous formulons un ansatz de développement de la solution type Chapman-Enskog, et obtenons une loi de paroi implicite sur le bord du domaine lisse (artère seule). Nous montrons des estimations d'erreurs et des simulations numériques / This work is concerned with different aspects of multiscale partial differential equations. For three problems, we address questions of modelling and discretization thanks to the observation of the multiplicity of scales, time or space. We propose in the first part a model of approximation of a fluid with a free surface (ocean). The derivation of our multilayer shallow water type model is based on the analysis of the different space scales generally observed in geophysical flows, precisely the 'shallow water' assumption. We obtain an existence and uniqueness result of local in time solution and propose a finite volume scheme and numerical simulations. Next we study a hyperbolic relaxation problem, motivated by the kinetic theory of gaz. Adopting an Asymptotic Preserving strategy of discretization, we build and analyze a numerical scheme. The convergence is proved for any value of the relaxation parameter, as well as the consistency with the equilibrium problem, thanks to error estimates. We present some numerical simulations. The last part deals with a blood flow model in a stented artery. We consider a Stokes problem in a multiscale space domain, that is a macroscopic box (the artery) containing a microscopic roughness (the stent). To avoid expensive simulations when discretizing the whole rough domain, we perform a Chapman-Enskog type expansion of the solution and derive an implicit wall law on the boundary of the smooth domain. Error estimates are shown and numerical simulations are presented
|
2 |
Modélisation et méthodes numériques pour l'étude du transport de particules dans un plasma chaud / Modelling and numerical methods for the study of particle transport in a hot plasmaGuisset, Sébastien 23 September 2016 (has links)
Les modèles aux moments angulaires constituent des descriptions intermédiaires entre les modèles cinétiques et les modèles fluides. Dans ce manuscrit, les modèles aux moments angulaires basés sur un principe de minimisation d'entropie sont étudiés pour des applications en physique des plasmas. Ce mémoire se découpe en trois parties. La première est une contribution à la modélisation en physique des plasmas à travers le formalisme des modèles aux moments angulaires. Dans celle-ci, le domaine de validité de ces modèles est étudié en régimes non-collisionels. Il est également montré que les opérateurs de collisions proposés pour le modèle M1 permettent de retrouver des coefficients de transport plasma précis. La deuxième partie de ce document concerne la dérivation de méthodes numériques pour l'étude du transport de particules en temps long. Dans ce cadre, des schémas numériques appropriés pour le modèle M1, préservant l'asymptotique, sont construits et validés numériquement. La troisième partie représente un premier pas significatif vers la modélisation multi-espèces. Ici, le modèle aux moments angulaire M1, construit dans un référentiel mobile, est appliqué à la dynamique des gaz raréfiés. Les propriétés de ce modèle sont détaillées, un schéma numérique est proposé et une validation numérique est menée. / Angular moments models represent alternative descriptions situated in between the kinetic and the fluid models. In this work, angular moments models based on an entropy minimisation principle are considered for plasma physics applications. This manuscript is organised in three parts. The first one is a contribution to plasma physics modelling within the formalism of angular moments models. The validity domain of angular moments models in collisionless regimes is studied. It is also shown that the collisional operators proposed for the M1 angular moments model enable to recover accurate plasma transport coefficients. The second part of this document deals with the derivation of numerical methods for the long timescales particle transport. Appropriate asymptotic-preserving numerical schemes are designed for the M1 angular moments model and numerical validations are performed. The third part represents a first important step toward multi-species modelling. The M1 angular moments model in a moving frame is introduced and applied to rarefied gas dynamics. The model properties are highlighted, a numerical scheme is proposed and a numerical validation is carried out.
|
3 |
Analyse mathématique et numérique de modèles gyrocinétiques / Mathematical and numerical analysis of gyro-kinetic modelsCaldini-Queiros, Céline 15 November 2013 (has links)
Cette thèse porte sur les équations gyro-cinétiques et traite un développement rigoureux deslimites de l'équation de Vlasov avec différents opérateurs de collision dans un champ magnétiquefort, ainsi que du développement de méthodes numériques.On commence par une étude de l'opérateur de moyenne. L'opérateur de moyenne a été développé parM. Bostan dans le cadre général d'une équation pour laquelle une partie du transport estfortement pénalisée. Puis, on applique ces résultats généraux aux deux régimes limites que nousétudions : le régime du rayon de Larmor fini et le régime centre-guide.On s'intéresse au calcul précis et explicite de la moyenne de l'opérateur de Fokker-Planck-Landau. On se place pour cela dans le cas du régime du rayon de Larmor fini. Avant de réaliserles calculs sur l'opérateur de Fokker-Planck-Landau, qui contient des convolutions et des termesde diffusion, il semble raisonnable de calculer la moyenne de l'opérateur de relaxation deBoltzmann, dont l'expression est plus simple.On se place ensuite dans le cas du régime centre-guide et on présente un schéma numérique basésur une décomposition micro-macro de la fonction de distribution des particules qui provientd'un travail en collaboration avec N. Crouseilles et M. Lemou. On obtient un schéma uniformémentconsistant avec le modèle continu, pour tout ordre du champ magnétique. Des simulationsnumériques, basées sur cette approche, ont été réalisées à l'aide d'un code de calcul 2D quel'on a développé durant cette thèse.On présente ensuite un projet réalisé dans le cadre du Cemracs 2012, consacré à la modélisationdes écoulements sanguins dans le réseau veineux cérébral. / The main subject of this thesis is the gyro-kinetic equation. We present a rigourousdeveloppement of the Vlasov equation limits with different collision operator in a strongmagnetic field and numerical methods.We start with a study of the gyro-average operator. The average operator has been introduced byM. Bostan in the case of an equation where part of the transport is highly penalised. Then weapply our results at the two approximation we study : the finite Larmor radius approximation andthe guiding-center approximation.We first focus on the precise and explicit computation of the Fokker-Planck-Landau operatoraverage in the finite Larmor radius approximation. The Fokker-Planck-Landau operator containsconvolution and diffusion terms, it is then reasonable to first compute the average of theBoltzmann relaxation operator.We then focus on the guiding-center approximation and present a numerical scheme based on amicro-macro decomposition of the particles distribution fonction which comes from a joint workwith N. Crouseilles and M. Lemou. We obtain a scheme which is uniformly consistant with thecontinuous model for any order of the magnetic field. Numerical simulation based on thisapproach are presented.The last chapter of this thesis presents a project which was realised during the Cemracs 2012concerning the modelisation of blood flow in cerebral veins.
|
Page generated in 0.0985 seconds