• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 32
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

2-keto-3-deoxygluconate aldolase from Sulfolobus solfataricus

Lamble, Henry John January 2004 (has links)
No description available.
22

Construction and characterisation of horseradish peroxidase mutants that mimic some of the properties of cytochromes P450

Ngo, Emile January 2005 (has links)
No description available.
23

Kinetic and structural consequences of modifications to the substrate interaction site of Horseradish peroxidase C

Williams, Gareth Allen January 2005 (has links)
No description available.
24

Mutagenic studies into the catalytic versatility of soluble methane monooxygenase

Nichol, Tim January 2011 (has links)
Soluble methane monooxygenase (sMMO) is a multicomponent bacterial enzyme that catalyzes the oxidation of methane to methanol, as well as oxidizing many other adventitious substrates. A number of mutagenic studies were carried out on the sMMO enzyme of Methylosinus trichosporium OB3b in order to gain insight into sMMO and probe how structural aspects relate to function of the enzyme. Leu110 within the hydroxylase a-subunit of sMMO has been proposed as a possible gating residue, controlling access of substrate to the active site (Rosenzweig et al. 1997). A range of site directed mutants were created at the 110 position and screened for activity with a number of aromatic substrates. All mutants showed relaxed regioselectivity with all substrates assayed. However no evidence of a gating residue was found, indicating that Leu110 is more important in determining regioselectivity than substrate access to the active site. Comparison to the highly similar butane monooxygenase led to the creation of three site directed mutants: M184V F282L and C151T. M184V and C151T showed small changes in regioselectivity and reduced activity with most substrates. The M184V mutant showed relaxed regioselectivity and a novel oxidation product with the substrate mesitylene which may have implications for substrate trafficking. The F282L mutant produced a stable enzyme which had no activity with any of the substrates tested, showing Phe282 is important for the enzyme function. A random mutagenesis experiment was devised and a colorimetric screen for the oxidation of triaromatic compounds was used to screen mutant libraries for activity towards anthracene and phenanthrene. However no activity towards triaromatic compounds was detected. In order to improve the cloning strategies and to make creation of mutant libraries easier, a novel expression vector pT2ML was created. The pT2ML vector reduces the number of cloning steps required to make soluble methane monooxygenase mutants. This expression system was used to make a site directed mutants F188Aand N116G in order to complement previous site directed mutant studies, as well as a recombinant wild type mutant in order to asses the activity of the new expression system which is comparible to the wild type enzyme.
25

A branched-chain 2-oxoacid dehydrogenase multienzyme complex from Thermoplasma acidophilum

Heath, Caroline January 2006 (has links)
No description available.
26

Immunological and biosynthetic studies of the human pyruvate dehydrogenase complex

Al-Amodi, Hiba Saeed Bagader January 2007 (has links)
coli at different temperatures, it was observed that both types of presequence as well as the nature of mature protein affect the level of protein expression. Therefore, it was noticed that both types of presequence had no significant effect on the level of protein expression when they were linked to the mature E3 whereas the negative effect of these presequences was apparent when they were linked to mature E2 or E3BP. Secondly, comparing the solubility of precursors with their mature forms, both extended and standard presequences markedly reduced the solubility of precursor constructs by inducing the production of inclusion bodies although the effect appeared to be more marked with the former. Thirdly, on decreasing the rate of the protein synthesis by growing E. coli cultures at lower temperatures, it was possible to minimise the formation of insoluble protein aggregates and achieve partial or indeed complete solubility of precursor forms in some cases. Fourthly, these precursors appeared to retain the ability to fold correctly or at least to initiate the correct folding pathway. Thus both soluble and insoluble fractions of E2 and E3BP precursors contained lipoylated domains as judged by their ability to cross-react with PD2, an indication that these N-terminally located domains had adopted their native conformations. These observations were consistent with the view that N-terminal mitochondrial targeting sequences markedly reduced the rate of protein folding rather than suppressing the folding process completely. In this scenario, precursors would exist as nascent folding intermediates for longer periods compared to their mature equivalents and so would be more prone to aggregation and degradation as observed in this study. Further experiments are planned to test this hypothesis.
27

The architectural complexity of the human PDC core assembly

Vijayakrishnan, Swetha January 2009 (has links)
The mammalian pyruvate dehydrogenase complex (PDC) is a key multi-enzyme assembly linking the glycolytic pathway to the TCA cycle via the specific conversion of pyruvate to acetyl CoA and, as such, is responsible for the maintenance of glucose homeostasis in humans. PDC comprises a central pentagonal dodecahedral core of 60 dihydrolipoamide acetyltransferase (E2) and 12 E3 binding protein (E3BP) subunits. Presently, two conflicting models of PDC (E2+E3BP) core organisation exist: the ‘addition’ (60+12) and ‘substitution’ (48+12) models. In addition to its catalytic role, the multi-domain E2/E3BP core provides the structural framework to which 30 pyruvate decarboxylase (E1) heterotetramers and 6-12 dihydrolipoamide dehydrogenase (E3) homodimers are proposed to bind at maximal occupancy. The formation of specific E2:E1 and E3BP:E3 subcomplexes are characteristic of eukaryotic PDCs and are critical for normal complex function. Despite the availability of limited structural data, the exact subunit organisation and mechanism of operation of the mammalian E2/E3BP core remains unknown. This thesis describes the large-scale purification of tagged, recombinant human PDC cores, full-length rE2 and rE2/E3BP, truncated E2/E3BP, peripheral rE3 enzyme as well as native E2/E3BP core (bE2/E3BP) purified from bovine heart. The ability to purify large amounts of pure protein has enabled the characterisation of the individual cores as well as the E2/E3BP:E3 complex using a variety of biochemical and biophysical techniques. Full-length rE2/E3BP, rE2, bE2/E3BP, truncated E2/E3BP (tLi19/tLi30) and rE2/E3BP:E3 were analysed in solution by analytical ultracentrifugation (AUC). While AUC of the cores supported the substitution model of core organisation, the stoichiometry of interaction was determined to be 2:1 (rE2/E3BP:E3). This was further complemented by gel filtration chromatography (GFC) and small angle neutron scattering (SANS), implying the possible existence of a network of E3 ‘cross-bridges’ linking pairs of E3BP molecules across the surface of the E2 core assembly. Low resolution solution structures obtained for rE2/E3BP, bE2/E3BP and tLi19/tLi30 by small angle x-ray scattering (SAXS) and SANS revealed the presence of icosahedral cores with open pentagonal faces favouring the substitution model of core organisation. These solution structures also indicated high structural similarity between the recombinant and native cores, as well as with the crystal structure obtained previously for the truncated bacterial E2 core. In addition, homology modelling and superimpositions of high- and low-resolution structures of the core revealed conservation of the overall pentagonal dodecahedral morphology despite evolutionary diversity. Evidence for the substitution model of core organisation was further substantiated by negative stain EM of the recombinant and bovine E2/E3BP cores. SANS stoichiometry data indicated the binding of 10 E3 dimers per E2/E3BP core. Although this could correspond to approximately 1:1 stoichiometry between E2/E3BP:E3, subsequent radiolabelling studies suggested possible variation in core subunit composition between the native and recombinant E2/E3BP cores. Therefore, as opposed to the 48E2+12E3BP substitution model based on AUC and SAXS studies with the recombinant E2/E3BP core, rE2/E3BP cores produced in this study indicated a higher level of incorporation of E3BPs with a maximum core composition of 40E2+20E3BP. On the basis of this new finding we have proposed the ‘variable E3BP substitution model’, wherein the number of E3BPs within the core can range from 0 to a maximum of 20, thus resulting in variable populations of E2/E3BP cores. Despite this core variability, the highly controlled regulatory mechanisms in vivo may bias the core composition towards an average of 48E2+12E3BP. However, as the over-expression of the recombinant E2/E3BP core in our study is not as tightly regulated as in vivo, higher number of E3BPs (>12) is observed to be integrated into the core. This new level of architectural complexity and variable subunit composition in mammalian PDC core organisation is likely to have important implications for the catalytic mechanism, overall complex efficiency and tissue-specific regulation by the intrinsic PDC kinases (PDKs) in normal and disease states. The E2 cores of the PDC family are known to be highly flexible, exhibiting inherent size variability reflective of the ‘breathing’ of the core. Integration of E3BP into the E2 core assembly would then be expected to have significant consequences for the structural assembly, affecting the ‘breathing’ and in turn the function and regulation of the complex. Unfolding studies to assess core stability via circular dichroism (CD) and tryptophan fluorescence revealed lower stability of the rE2/E3BP core as compared to cores composed exclusively of rE2 subunits, thus implying the contribution of E3BP towards core destabilisation. In addition, crosslinking studies indicated weak dimerisation of rE3BP, which may be a key factor promoting core destabilisation. The lower stability of the E2/E3BP core may be of benefit in mammals where sophisticated fine tuning is required to obtain cores with optimal catalytic and regulatory efficiencies. SAXS solution structures of E2/E3BP cores obtained were unable to locate the exact positions of E3BP within the core. However, SANS in combination with contrast matching of selectively deuterated components as well as cryo-EM, EM tomography and single molecule studies could be used in future for determination of the exact locations of E3BP, and validating the importance of E2/E3BP core organisation and subunit composition for overall PDC function and regulation.
28

Aldéhyde déshydrogénases non phosphorylantes : importance de la dynamique structurale au cours de la catalyse / Aldehyde Dehydrogenase non phosphorylating : Importance of structural dynamics during catalysis

Bchini, Raphaël 05 December 2012 (has links)
Une caractéristique essentielle du mécanisme catalytique des ALDH est l'importance de la flexibilité et de la dynamique conformationnelle dans le site actif, incluant les chaînes latérales de résidus, le substrat, et le cofacteur. Ma thèse a permis d'identifier des bases responsables de la reconnaissance du rétinal contrôlant la biosynthèse de l'acide rétinoïque dans les RALDH. J'ai ensuite pu suivre le basculement du cofacteur réduit en utilisant le FRET, ce qui m'a permis d'établir un modèle cinétique pour déterminer la constante de vitesse associée à cette étape. Enfin, les résultats obtenus pour identifier les bases moléculaires responsables de la dissociation tardive ou précoce du cofacteur réduit ont montré que le mode de stabilisation du cofacteur est à l'origine de cette différence entre ces deux familles d'enzymes / An essential feature of the catalytic mechanism of ALDH is the importance of flexibility and conformational dynamics in the active site, including the side chains of residues, substrate and cofactor. My thesis has identified bases responsible for the recognition of retinal controlling biosynthesis of retinoic acid in RALDH. I was then able to follow the flip of the cofactor reduced by using FRET, which allowed me to develop a kinetic model to determine the rate constant associated. Finally, the results obtained to identify the molecular basis responsible for late or early dissociation of the reduced cofactor showed that the mode of stabilization of the cofactor is the origin of this difference between these two families of enzymes
29

Caractérisation enzymatique et structurale d'une nouvelle famille d'aldéhyde déshydrogénase impliquée dans la dégradation de composés aromatiques toxiques / Enzymatic and structural study of a new family of aldehyde dehydrogenase involved in the catabolism of the aromatic toxic compounds

Fischer, Baptiste 14 December 2012 (has links)
Deux familles d'aldéhyde déshydrogénases (ALDH) phylogénétiquement et structuralement distinctes catalysent l'oxydation des aldéhydes : les ALDH phosphorylantes et les ALDH non phosphorylantes. Ces enzymes jouent un rôle essentiel au niveau cellulaire en intervenant au niveau du métabolisme et dans des processus de détoxication. En 2003, la résolution de la structure tridimensionnelle de l'enzyme bifonctionnelle 4-hydroxy-2-cétovalérate aldolase/acétaldéhyde déshydrogénase (DmpFG) de Pseudomonas sp. CF600 a permis l'identification d'une nouvelle famille d'ALDH : la sous-unité DmpF étant structuralement apparentée aux ALDH phosphorylantes alors qu'elle présente une activité de type non phosphorylante CoA-dépendante. Par la caractérisation enzymatique et structurale des orthologues MhpEF issus d'Escherichia coli et de Thermomonospora curvata, nos travaux montrent que les paramètres cinétiques de MhpF ne dépendent pas de son état oligomérique, ce qui est cas unique pour les ALDH. De plus, la résolution des structures cristallographiques de l'enzyme complexée avec du NAD+ ou du CoA, couplée à la structure en solution de la forme apoenzyme obtenue par SAXS montrent que le Rossmann fold s'accomode de la présence des cofacteurs par un vaste changement conformationnel. Enfin, l'étude du mécanisme catalytique et la résolution de la structure thioacylenzyme permettent d'identifierla MhpF comme étant un hybride des deux familles d'ALDH caractérisées jusqu'à présent / Two phylogenetically and structurally unrelated families of NAD(P)-dependent aldehyde dehydrogenases (ALDH) catalyze the oxidation of aldehydes into activated or non-activated acids. These enzymes are known to be involved in many biological functions such as cellular differentiation, central metabolism, or detoxification pathways. The crystal structure of the bifunctional enzyme, 4-hydroxy-2-ketovalerate aldolase (DmpG)/acetaldehyde dehydrogenase (DpmF) from Pseudomonas sp. CF600, leads to the identification of a new ALDH family. The DmpF subunit exhibits a non-phosphorylating CoA-dependent aldehyde dehydrogenase activity while its structure belongs to the phosphorylating ALDH superfamily. The kinetics of the MhpEF orthologs from Escherichia coli and Thermomonospora curvata show that the kinetic parameters of MhpF do not depend of its oligomeric state, which is unique for an ALDH. In addition, the crystal structures of the enzyme with NAD+ or CoA, as well as the solution structure of the apoenzyme using SAXS, reveal the dynamics of the overall Rossmann fold between apo or cofactors-bound conformers, which is necessary to carry on the catalytic cycle. Finally, the catalytic mechanism and the structure of the thioacylenzyme intermediates indicate that MhpF is a hybrid between both ALDH families characterized to date
30

La free R Méthionine sulfoxyde réductase (fRMsr) de Neisseria meningitidis : Mécanisme, catalyse et spécificité structurale / The Free R Methionine sulfoxide reductase (fRMsr) from Neisseria meningitidis : Mecanism, catalysis and specificity

Libiad, Marouane 12 October 2012 (has links)
Les Méthionine sulfoxyde réductases (Msr) catalysent la réduction spécifique des méthionine sulfoxydes (Met-O) en méthionines (Met). Elles sont impliquées dans la résistance des cellules à un stress oxydant et dans la virulence des bactéries pathogènes du genre Neisseria. Cette famille d'enzyme se compose de trois classes, les MsrA et B, structuralement distinctes, et présentant une stéréosléctivité respectivement pour l'isomère S et R de la fonction sulfoxyde du substrat. Une troisième classe, découverte récemment, et appelée fRMsr, catalyse la réduction spécifique de la forme libre de l'isomère R de la fonction sulfoxyde. La fRMsr appartient à la famille des domaines GAF, généralement impliqués dans la signalisation cellulaire, et les fRMsr représentent le premier domaine GAF présentant une activité enzymatique. Les études réalisées au cours de ma thèse sur la fRMsr de Neisseria meningitidis ont permis de montrer que : 1) fRMsr de N. meningitidis présente un mécanisme catalytique identique à MsrA/B avec la formation d'au moins un pont disulfure intramoléculaire Cys84-Cys118 réduit par la thiorédoxine (Trx) ; 2) La Cys118 est le résidu catalytique sur lequel l'intermédiaire acide sulfénique doit se former ; 3) L'étape réductase est l'étape cinétiquement déterminante du mécanisme à deux étapes conduisant à la formation du pont disulfure Cys84-Cys118. La combinaison de l'analyse des résultats cinétiques, et de la structure tridimensionnelle de la fRMsr de N. meningitidis en complexe avec le substrat ont permis de montrer : 1) L'existence d'un site de reconnaissance oxyanion impliqué dans la stabilisation de la fonction carboxylate ; 2) Un rôle de la fonction carboxylate du résidu Asp143 dans la catalyse de l'étape réductase ; 3) Le résidu Glu125 est impliqué dans la reconnaissance et/ou le positionnement du substrat Met-O probablement via la stabilisation du groupement NH3+ ; 4) Un rôle du résidu Asp141 dans le positionnement des résidus Asp143 et Glu125 ; 5) le noyau indole du Trp62 est impliqué dans la stabilisation du groupe méthyle-[epsilon] / Methionine sulfoxide reductases (Msr) catalyze the specific reduction of methionine sulfoxides (Met-O) into methionine (Met). They are involved in cell defences against oxidative stress and virulence of pathogenic bacteria of Neisseria genius. This family of enzymes consists of three classes, MsrA and MsrB, structurally-unrelated, Specific for the S and the R epimer of the sulfoxide function of the substrate, respectively. A third class, recently discovered and called fRMsr, selectively reduce the free form of the R epimer of the sulfoxide function. The fRMsr belongs to the family of GAF domains, they are usually involved in cell signaling, and fRMsr represent the first GAF domain to show enzymatic activity. The studies of the Neisseria meningitidis fRMsr have shown that: 1) The Neisseria meningitidis fRMsr have a identical catalytic mechanism to MsrA and MsrB with the formation of at least one intramolecular disulfide bond, Cys84-Cys118 reduced by thioredoxin (Trx) ; 2) The Cys118 is demonstrated to be the catalytic Cys on which a sulfenic acid is formed ; 3) The Reductase step is the rate determining step of the mechanism leading to the formation of the disulfide bond Cys84-Cys118. The combination of the biochemical and kinetics data, and the examination of the 3D structure of the N. meningitidis fRMsr in complex with its substrate shown: 1) an oxyanion hole involved in the accommodation of the carboxylate group ; 2) the carboxylate group of the Asp143 residue involved in the catalysis of step reductase, and 3) The Glu125 residue involved in the recognition and/or positioning of the Met-O probably by the stabilization of the NH3+; 4) the Asp141 residue involved in the positioning of Asp143 and Glu125 residues ; 5) the indole ring of the Trp62 residue involved in stabilizing of the epsilon-methyl group

Page generated in 0.026 seconds