• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions entre composants de la maintenance génomique chez Archaea hyperthermophiles : étude des associations entre PCNA et le complexe Mre11-Rad50 et entre les hélicases MCM et XPD / Interactions of genomic maintenance components from hyperthermophilic Archaea : focus on the interplay between PCNA and Mre11-Rad50 complex and on a helicase duo with MCM and XPD

Hogrel, Gaëlle 07 December 2015 (has links)
Vivant à des températures supérieures à 80°C, les archées hyperthermophiles ont démontré une capacité étonnante à se remettre de dommages dans leur ADN, suggérant la présence de gardiens du génome particulièrement efficaces. Ces gardiens, des protéines relativement similaires entre archées et eucaryotes, agissent et interagissent dans un ballet savamment orchestré par la cellule. Chez les archées, plusieurs protéines impliquées dans des voies essentielles à la réparation de I'ADN manquent à I'appel. Précédemment au laboratoire un réseau impliquant les protéines de la maintenance génomique de Pyrococcus abyssi a dévoilé de nouvelles interactions protéine-protéine. Décrire l'interaction pour mieux comprendre sa fonction, voici la démarche suivie et présentée dans ce manuscrit pour les duos: PCNA/Mrell-Rad50 et MCM/XPD. Pour la première fois chez Pyrococcus furiostts une interaction physique et fonctionnelle a été démontrée entre PCNA, le maestro de la réplication, et Mrell-Rad50, le complexe de la recombinaison. Pour la seconde étude, la caractérisation de l'hélicase réplicative MCM de P. abyssi a été menée via une approche biophysique basée sur des techniques de fluorescence. Les difficultés rencontrées durant la production de son partenaire potentiel XPD, n'ont toutefois pu permettre la caractérisation de leur interaction. Plus généralement ces interactions s'inscrivent dans un contexte où le couplage de la réplication avec des processus de réparation trouve son importance particulièrement chez les archées de l'extrême, archées qui se révèlent être de passionnants modèles pour l'étude des mécanismes de la maintenance génomique. / Living at temperatures above 80°C, hyperthermophilic Archaea demonstrated amazing capacity to recover from DNA damages, suggesting they arguably have efficient genome guardians. These guardians, proteins which are relatively similar between Archaea and eukaryotes, act and interact like a ballet orchestrated by the cell. Several proteins involved in essential repair pathway in eukaryotes are missing in Archaea. To gain insights into archaeal genome maintenance processes, a previous work proposed a protein-protein interaction network based on Pyrococcus abyssi proteins. Through this network, new interactions involving proteins from DNA replication and proteins from DNA repair were highlighted. To describe interactions for a better understanding of their functions, was the aim of the work presented here for two protein interactions: PCNA/Mrell-Rad50 and MCM/XPD. For the first time in Pyrococcusfuriosus, we demonstrated both physical and functional interplay between PCNA, the replication maestro, and Mrell-Rad50, a complex involved in recombination process. For the second studied interaction, we used a biophysics approach based on fluorescent technics to characterise helicase activity of P.abyssi MCM. As several problems were encountered for XPD production, we did not characterise the helicase interaction. These two interactions are part of a more general context, where combined DNA replication and DNA repair processes could be important, especially for extremophile Archaea, Archaea which are amazing study models for understanding molecular processes ensuring genome integrity.
2

Exploration du réseau d’interactions impliqué dans la maintenance génomique de l'Archaea hyperthermophile Pyrococcus abyssi / Protein network for genomic maintenance in the hyperthermophilic archaeon Pyrococcus abyssi

Pluchon, Pierre-François 18 December 2012 (has links)
Les organismes vivants doivent reproduire et transmettre ne variatur l’information contenue dans les chromosomes. Ainsi, la conservation de l’intégrité du génome est un processus biologique fondamental. La maintenance génomique constitue l’ensemble des processus biologiques impliqués dans la conservation, la duplication et la transmission de l’information génétique contenue dans les chromosomes. La machinerie réplicative des Archaea est décrite comme une version simplifiés de celle connue chez les Eucaryotes faisant des Archaea un excellent modèle d’étude de la réplication. Contrairement à la réplication, les processus Archaea de réparation de l’ADN sont encore mystérieux. En effet, plusieurs protéines essentielles de la réparation semblent absentes des génomes Archaea et ce même chez les espèces Hyperthermophiles (HA). Avec une température optimale de croissance proche de 100°C, ces Archaea doivent posséder des capacités considérables de réparation des dommages de l’ADN, catalysés à haute température. Ainsi les Archaea hyperthermophiles sont probablement dotées d’un système de réparation alternatif extrêmement efficace. Ce système et sa coordination avec la réplication sont inconnus. Un protocole de purification d’affinité couplée à la spectrométrie de masse des protéines a permis d’identifier les complexes protéiques impliqués dans la maintenance génomique de l’Archaea hyperthermophile P. abyssi. Les complexes identifiés sont compilées dans un réseau d’interaction. Soumis à une étude topologique le réseau révèle notamment de nouvelles interactions entre des protéines essentielles de la maintenance génomique, conservées avec les Eucaryotes. Plusieurs interactions sont vérifiées indépendamment où caractérisées fonctionnellement in vitro ou in vivo. Ces travaux mettent en lumière l’étroite collaboration entre la réplication et la recombinaison de l’ADN et révèlent de nouveaux aspects de la machinerie de transcription. / DNA replication, recombination and repair are central and essential mechanisms in all cells. Highly efficienthigh-fidelity chromosome replication is vital for maintaining the integrity of the genetic information and for theavoidance of genetic disease. Archaeal replisome is described as simplified version of the eukaryotic system.However, DNA repair is still enigmatic, as many essential repair proteins have not been identified in Archaealgenomes. The question of DNA repair is even more puzzling while many Archaea lives under extremetemperature that promotes DNA instability and catalyses nucleobase damages. Thus, HyperthermophilicArchaea (HA) must have solved a molecular problem (spontaneous loss of native DNA structure) at amagnitude that mesophilic organisms do not face. A highly adapted DNA maintenance system must operate inorder to maintain DNA integrity. Those mechanisms and their possible coordination with DNA replication arestill unknown. Here, I report the first protein-protein interaction network of genomic maintenance in HA. Using AP-MSapproach we identified new protein complexes potentially implicated in DNA replication, recombination andrepair of HA P. abyssi. Topological analysis of the network highlighted both known and unknown partners ofessential and conserved protein of genomic maintenance. From the network emerges multifunctional clustersintegrating both replication and recombination proteins and revealing new aspects of the transcriptionmachinery. I also provide experimental confirmation of some of the interactions we detected.I propose that the interactions we observe reflects the interplay between recombination and replicationmachineries that likely interfaces with regulatory elements involved in the control of the DNA damageresponse, as shown by the identification of a new factors, presumably involved in the coupling of DNArecombination and DNA synthesis at the replication fork.

Page generated in 0.0097 seconds