11 |
Development of dielectric barrier discharge plasma actuators and their application at subsonic speedsHale, Craig January 2012 (has links)
Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The aim of this project is to initially develop a system capable of generating and sustaining a plasma that generates a wall bounded jet. The next step is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Finally the best case design is applied at the leading edge and flap shoulder of a NACA0015 aerofoil with a 20% flap. Utilising a transformer cascade, plasma has been generated for a variety of input voltages. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry (PIV). Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design was investigated. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with shallow initial encapsulated electrodes induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric. The best actuator case is applied to the aerofoil for Reynolds numbers of 1:97x10⁵, 2:63x10⁵ and 3:29x10⁵. The lift and drag are recorded using pressure measurements around the aerofoil surface and across the aerofoil's wake. PIV is utilised to visualise the flow field. The trailing edge actuator produces a step increase in lift for pre-stall angles of attack and delays stall by 1° at Re = 1:97x10⁵. The leading edge actuator has limited impact on the flow for the no flap deflection case due to the actuator location. As the flap deflection increases the leading edge actuator is able to influence the flow. Repositioning of the leading edge actuator has the ability to reattach the flow around the fore portion of the aerofoil at a post stall angle of alpha = 18°.
|
12 |
Synthèse de nanostructures d'oxyde de cuivre par micro-post-décharge micro-ondes à pression atmospherique / Synthesis nanostructures of copper oxide by microwave micro-afterglow at atmosphericAltaweel, Ayman 25 June 2014 (has links)
L’étude de l’oxydation de films minces de cuivre déposés par pulvérisation magnétron sur des substrats de silicium et de verre a été menée au moyen d’une micro-post-décharge micro-ondes dans l’objectif de faire croître de manière localisée des nanostructures contrôlées d’oxyde. L’utilisation de plasma permet d’utiliser des atomes d’oxygène plutôt que de molécules d’oxygène et de pouvoir diminuer les températures de synthèse d’environ 100° typiquement. Il a ainsi été possible de faire croître des nanostructures hiérarchiques formées de nanoparois en boule, des nanoparois d’épaisseurs variables, des nanofils et des nanoplots de CuO. Ces différentes nanostructures se forment à des instants successifs et se répartissent radialement par rapport au centre de l’impact de la post-décharge. Elles croissent en suivant des cinétiques paraboliques qui traduisent une limitation par un transport diffusionnel. La diffusion est externe et conduit la formation de porosités Kirkendall à l’interface substrat-cuivre. Les analyses TEM ne montrent pas d’orientation privilégiée. Les nanofils sont soit mono- soit bi-cristallins. Des contraintes de compression (respectivement de tension) ont été mesurées dans Cu2O (respectivement dans CuO). La taille de grain est plus élevée au centre que sur les bords du traitement. Cela permet la croissance de nanoparois et de nanofils de diamètres relativement importants près du centre alors qu’une taille de grains plus petites sur les extérieurs entraîne la formation de nanofils plus fins mais avec une densité surfacique supérieure. Les différents modèles de croissance existant ont été repris pour interpréter ces nouveaux résultats / Oxidation of copper thin films deposited by magnetron sputtering on silicon and soda-lime glass substrates was performed by means of a microwave micro-afterglow to grow locally controlled nanostructures of copper oxide. The use of plasma discharges offers the possibility to handle oxygen atoms instead of oxygen molecules, which enable a substantial decrease in the synthesis temperature of about 100° typically. It was thus possible to grow hierarchical nanostructures made of nanowalls shaped in balls, nanowall with variable thicknesses, nanowires and nanodots of CuO. These different nanostructures forms successively and are distributed radially from the impact center of the post-discharge outwards. They grow by following parabolic growth rates that are due to a diffusion transport limitation. Outward diffusion occurs and creates a Kirkendall porosity at the substrate-copper interface. TEM analyses do not show any preferential orientation. Nanowires are either mono- or bi-cristals. Compressive (respectively tensile) stress was measured in Cu2O (respectively CuO). The grain size is larger in the center than on the edges of the treatment area. This enables the growth of nanowalls and nanowires with diameters pretty large close to the center whereas a smaller grain size on the edges leads to the formation of thinner nanowires but with higher surface density. The different existing growth models were considered to interpret these new results.
|
13 |
A Langmuir multi-probe system for the characterization of atmospheric pressure arc plasmasFanara, C. January 2003 (has links)
The 'high-pressure' atmospheric (TIG) arc plasma is studied by means of a multi-Langmuir probe system. In order to determine the appropriate regime of operation, definitions of the plasma parameters for the description of the argon arc are considered and evaluations are presented. A description of the probe basic techniques is followed by an in-depth discussion of the different regimes of probe operation. The emphasis is put on atmospheric and flowing (arc) regimes. Probe sheath theories are compared and “Nonidealities” like cooling due to plasma-probe motion and probe emission mechanisms are then described. The extensive literature review reveals that the existing probe theories are inappropriate for a use in the TIG arc, because of ‘high’ pressure (atmospheric), broad range of ionization across the arc, flowing conditions, and ultimately, to the uncertainty about onset of Local Thermodynamical Equilibrium. The Langmuir probe system is built to operate in floating and biased conditions. The present work represents the first extensive investigation of electrostatic probes in arcs where the experimental difficulties and the primary observed quantities are presented in great detail. Analysis methodologies are introduced and experimental results are presented towards a unified picture of the resulting arc structure by comparison with data from emission spectroscopy. Results from different measurements are presented and comparison is made with data on TIG arcs present in literature. Probe obtained temperatures are lower than the values obtained from emission spectroscopy and this ‘cooling’ is attributed to electron-ion recombination. However, it is believed that probes can access temperatures regions not attainable by emission spectroscopy. Only axial electric potential and electric field are obtained because of the equipotential-probe requirement. Estimations of the sheath voltage and extension are obtained and a qualitative picture of the ion and electron current densities within the arc is given.
|
14 |
Synthèse de nanostructures d’oxyde de ruthénium par plasma micro-ondes en post-décharge à la pression atmosphérique / Synthesis of ruthenium oxide nanostructures by atmospheric pressure microwaves afterglowKuete Saa, Duclair 08 June 2015 (has links)
Diverses nanostructures de dioxyde de ruthénium ont été synthétisées par oxydation locale du ruthénium massif et de films minces de ruthénium au moyen de plasmas micro-ondes Ar-O2 en post-décharge à la pression atmosphérique. Ces revêtements ont été déposés préalablement par pulvérisation magnétron. Une étude approfondie a été réalisée pour déterminer l’évolution radiale de la température de surface qui évolue typiquement entre 530 K et 900 K. L’utilisation d’un plasma permet un abaissement de la température d’oxydation par rapport à des conditions thermiques dans la mesure où l’oxygène moléculaire est excité ou dissocié, ce qui fournit des espèces plus réactives comme l’oxygène singulet ou l’oxygène atomique. Suivant le substrat utilisé et les conditions opératoires, des structures en lamelles distantes de 20-50 nm, des micro-oursins localisés, des nanofils longs et denses et des microcristaux peuvent être formés. Les nanostructures obtenues ont été caractérisées par différentes techniques (microscopies électroniques, diffraction des rayons X ou spectrométrie de masse des ions secondaires). Les analyses MET ne révèlent pas d’orientation privilégiée des nanofils qui sont généralement monocristallins. Des mécanismes de croissance des nanostructures très différents ont été observés et identifiés. S’il apparaît qu’il est impossible sur substrat massif de ruthénium d’obtenir des nanostructures uniformément réparties, il en va autrement avec des substrats recouverts d’une couche mince de ruthénium qui permettent de former de véritables tapis de nanofils. La possibilité de localiser la croissance des nanofils par ajout de sels alcalins a été étudiée / Various ruthenium dioxide nanostructures were locally grown by the oxidation with an atmospheric pressure Ar-O2 microwave micro-afterglow of bulk ruthenium samples or thin films previously deposited by magnetron sputtering on silicon and silica. A special attention was paid to the distribution of the surface temperature of the sample which evolves typically between 530 K and 900 K. The use of plasma discharges allows a lowering of the temperature compared with the thermal oxidation conditions, given that molecular oxygen is excited or dissociated, which provides more reactive species such as singlet oxygen or atomic oxygen. According to the substrate used and the operating conditions, different nanostructures can be formed: lamellae separated by 20–50 nm, localized nano-sea urchins, high density of long nanowires and microcrystals. Nanostructures obtained were characterized by various techniques (electron microscopy, X-ray diffraction or secondary ion mass spectrometry). The grown RuO2 nanowires were determined to be generally single-crystalline with random crystallographic orientations. Very different growth mechanisms were observed and identified. Although it seems impossible to obtain uniformly distributed nanostructures on bulk ruthenium substrates, it is possible from substrates coated by a thin layer of ruthenium, which allows the formation of nanowire carpet. The possibility to localize the growth of nanowires by adding alkali salts has been studied. However, if the use of NaCl or KCl crystals locally enhances the nanowire density, they do not ensure systematically the growth of nanowires
|
15 |
Plasma methods for the clean-up of organic liquid wastePrantsidou, Maria January 2014 (has links)
This thesis has studied the low-temperature atmospheric pressure plasma as a potential technological application for the degradation of waste oils. The study has been approached initially by investigating the degradation of oil in gas phase only, in order to understand the gas chemistry and elucidate the plasma-chemical degradation mechanism. Gaseous odourless kerosene and dodecane have been used as simulants to waste oil and their plasma-chemical degradation has been studied using a BaTiO3 packed bed plasma reactor and a gliding arc discharge reactor. Kerosene showed similar degradation behaviour to dodecane and the latter one was chosen as a surrogate to allow quantitative analysis. The dodecane plasma degradation efficiency and the distribution of end-gaseous products have been studied under these two reactors in different gas compositions. Optical emission spectroscopy was used to identify intermediate excited species and calculate the rotational and vibrational temperature profiles. Differences in the dodecane degradation gas chemistry between the packed bed and the gliding arc plasma are discussed and postulated mechanisms are presented for each condition. Gliding arc discharge demonstrates higher degradation efficiency and it will be used mainly for the plasma-liquid treatment. The plasma-liquid dodecane treatment is firstly studied using argon dielectric barrier discharge. The effect of different reactor configuration, humidity and temperature to the discharge characteristics and degradation efficiency will be discussed. The study of the liquid dodecane degradation is extended by using the gliding arc discharge. Using N2 and Ar in both dry and humid conditions for the batch treatment of dodecane, the degradation efficiency, gas chemistry and liquid chemistry are discussed and correlated to the gas chemistry observed during the plasma treatment of gaseous dodecane under the same conditions, in order to gain an overall understanding of the plasma-liquid clean-up process. Finally, the gliding arc plasma treatment of liquid dodecane is studied using the recycling method and shows a significant improvement to the degradation efficiency.
|
16 |
Etude d'une décharge hors équilibre à pression atmosphérique pour des applications biomédicales : physique de la décharge, cinétique de la production des espèces réactives lors de l'interaction avec des cellules et des tissus vivants / Non-equilibrium atmospheric pressure discharge for biomedical applications : discharge physics, kinetics of reactive species production during the interaction with living cells and tissuesRiès, Delphine 16 December 2014 (has links)
Durant la dernière décennie, un nouveau type de décharge hors équilibre thermodynamique à pression atmosphérique a suscité un engouement croissant compte tenu de sa capacité de produire un plasma s'étendant dans l'air ambiant à une température proche de l'ambiante. Ces jets de plasma, souvent basés sur un réacteur de type décharge à barrière diélectrique, sont intéressants du point de vue de leurs propriétés physico-chimiques. De plus, ces jets de plasmas ont l'avantage de permettre des applications des matériaux thermosensibles, ouvrant ainsi un nouveau domaine de recherche, Plasma Médecine. Au GREMI le Plasma Gun, a été développé tant pour l'étude de la physique des jets de plasma que pour les applications biomédicales notamment dans le domaine de la cancérologie. Dans une première étape, des traitements par Plasma Gun in vitro et in vivo, dans le cadre d'un modèle murin du carcinome pancréatique, ont été effectués. L'action anti-tumorale du plasma a été démontrée ainsi que la combinaison bénéfique avec un traitement chimiothérapique. Fondée sur ces résultats encourageants, l'objectif principal de cette étude porte sur l'influence drastique de la cible de l'application sur les propriétés du plasma (propagation et production des espèces réactives) ainsi que l'interaction du gaz et du plasma. Des diagnostiques tels que l'imagerie rapide et filtrée en longueur d'onde, la spectroscopie d'émission optique, l'imagerie Schlieren ainsi que la spectroscopie infrarouge à transformée de Fourier ont été utilisés pour caractériser le jet de plasma. Une étude quantitative de la distribution spatiale et temporelle du radical hydroxyle (densité comprise entre 5.1011 et 1.1014 cm-3) a été réalisée par fluorescence induite par laser. L'étude de l'OH en combinaison avec un modèle numérique a permis une meilleure compréhension de la pénétration de l'air dans le jet de gaz et de l'interaction avec les surfaces humides. L'interaction complexe entre le comportement du gaz, du plasma et la nature de la cible est mise en avant en vue d'optimiser les applications biomédicales. / Over the past decade, a new type of non-equilibrium discharge at atmospheric pressure has attracted growing interest, given the ability to produce a plasma extending in ambient air close to room temperatures. These plasma jets, often based on a dielectric barrier discharge type of reactor, are interesting on their physicochemical property perspectives. In addition, these cold plasma jets have the advantage of allowing applications to heat sensitive materials, creating a new field of research, Plasma Medicine. At GREMI the Plasma Gun, has been developed for both the study of the physics of plasma jets and for biomedical applications particularly in the field of cancerology. In a first step, in vitro and in vivo were performed, within a rodent model of pancreatic carcinoma. The anti-tumor action of the plasma has been demonstrated as well as its benefic combination with a chemotherapeutic treatment. Based on these encouraging biomedical results, the main focus of this study is to report on the drastic influence of the application target on the plasma properties (propagation and production of reactive species) and on the strong coupling between gas jet and plasma discharge. Diagnostics such as fast, wavelength-filtered and Schlieren imaging, optical emission spectroscopy as well as Fourier transform infrared spectroscopy were used to characterize the plasma. A quantitative study on spatial and temporal distribution of hydroxyl radicals (OH density ranging between 5.1011 and 1.1014 cm-3) was performed by laser-induced fluorescence. The study of the OH in combination with a numerical model allowed a better understanding of the moist air penetration into the gas jet and the interaction with wet surfaces. This PhD work enlightened the complex interaction between the gas flow, the plasma and the nature of the target which has to be taken into account for further optimization of biomedical applications.
|
17 |
Élaboration par projection plasma d'un revêtement bicouche d'alumine réfléchissant et diffusant. Contribution à la compréhension des phénomènes interaction rayonnement/matière / Manufacturing of a reflecting and scattering bilayer in alumina by plasma spraying process. Contribution to the understanding of interaction radiation/matterMarthe, Jimmy 20 December 2013 (has links)
Ces travaux de thèse sont consacrés à l'élaboration de revêtement réfléchissant et diffusant par projection plasma d'arc soufflé. Par la sélection des paramètres opératoires et le contrôle de la microstructure des revêtements élaborés, la première partie de cette étude présente la mise en forme d'un revêtement bicouche (micro/nano-structuré) d'alumine possédant une réflectance supérieure à 90% sur la gamme UV-Visible. Le transfert nécessaire à la démonstration pour démontrer la faisabilité d'élaboration de pièces de plus grandes dimensions (0.25 m2) a été entrepris. Dans une seconde partie et à partir de l'exploration de la microstructure des revêtements et de leur physicochimie, l'amélioration de la réflectance dans le proche UV par la couche nanostructurée est explicitée d'une part par la nature de la phase cristallographique moins absorbante et d'autre part par la présence en nombre de pores de faibles dimensions. De plus, la caractérisation des propriétés radiatives des revêtements par inversion de l'Equation du Transfert Radiatif a permis d'obtenir des éléments de compréhension des phénomènes d'interaction rayonnement/matière. Enfin, une dernière partie a pour objectif de mettre en place les différents éléments nécessaires à la prédiction des propriétés optiques de revêtements mis en forme par projection plasma. Un modèle tridimensionnel a été proposé pour représenter numériquement la structure de chacune des couches micro- et nanostructurée à partir des analyses microstructurales. Le code de résolution des équations de Maxwell par méthode FDTD (Finite Difference Time Domain) a été validé et de premières simulations ont été réalisées / This study deals with the manufacturing of reflecting and scattering coatings by plasma spraying process. By the selection of operating parameters and the control of the coatings microstructure, the first part of this work presents the elaboration of a micro/nanostructured bilayer material in alumina with a reflectance up to 90 % in the near UV-Visible range of wavelength. The feasibility of larger pieces (0.25m2) is demonstrated and the different characterizations for inserting the material in the Laser MegaJoule are performed. In a second part, from characterizations of the microstructure (by SEM, Hg Porosimetry, USAXS) and the chemical composition (DRX, X fluorescence), the improvement of the reflectance in the near-UV thanks to the nanostructured layer is explained, on the one hand, by the less absorbing crystallographic phase and, on the other hand, by the smaller and numerous pores. Moreover, the characterization of the radiation properties by the Radiation Transfer Equation inversion brings new elements for understanding the phenomena during radiation/porous media interaction and to determine the spatial repartition of the scattering radiation. The aim of the last part is to set up the different tools which are necessary to compute simulations of plasma-sprayed coatings optical behavior. From the microstructure analysis, a tridimensional numerical representation of each layer is suggested. The resolution of Maxwell equations is performed by FDTD (Finite Difference Time Domain) method. The model is validated and some first simulations are realized
|
18 |
Barrières thermiques par projection plasma de suspensions : développement et caractérisation de microstructures à faible conductivité thermique / Thermal barrier coatings performed by suspension plasma spraying : Development and characterization of low thermal conductivity microstructuresBernard, Benjamin 18 October 2016 (has links)
L’augmentation des températures de fonctionnement des turboréacteurs est un axe de développement privilégié dans l’industrie aéronautique. Une solution est l’amélioration des systèmes barrières thermiques. Ce travail de thèse s’intéresse au procédé de projection plasma de suspensions (SPS) qui permet d’envisager une amélioration significative des performances pour les prochaines générations de barrières thermiques, comparé au procédé d’évaporation sous faisceau d’électrons (EB-PVD). Le procédé SPS a en effet démontré une capacité à générer des microstructures colonnaires qui présentent un intérêt pour l’accommodation des contraintes thermo-mécaniques. Une étude microstructurale a conduit à l’identification des paramètres influant sur les variations de morphologies des revêtements (taille de colonnes, distribution de taille, compacité). Deux nuances optimisées en zircone yttriée (YSZ), nommées colonnaire et colonnaire compacte, ont été caractérisées de façon approfondie afin de déterminer les bénéfices du procédé SPS. Ces nuances se caractérisent par une conductivité thermique inférieure à 1 W.m-1.K-1, sur une plage de température allant de 25 à 1100 °C, soit des valeurs avantageuses par rapport à celles des revêtements EB-PVD (1,3 – 1,5 W.m-1.K-1). La durée de vie des dépôts SPS, estimée par cyclage thermique, est au moins équivalente à un dépôt YSZ réalisé par EB-PVD et cyclé en même temps. Le résultat le plus élevé obtenu, supérieur à 2000 cycles, est particulièrement prometteur. La capacité de fonctionnalisation du procédé SPS a par ailleurs permis la réalisation de systèmes multifonctionnels comprenant un dépôt colonnaire YSZ et un dépôt homogène Gd2Zr2O7 en surface. Cette architecture bicouche a pour objectif de pallier les infiltrations chimiques de type CMAS (CaO–MgO–Al2O3–SiO2) qui constituent un frein pour l’augmentation de la température de fonctionnement. Le caractère anti-CMAS du matériau Gd2Zr2O7 mis en forme par SPS a été évalué jusqu’à 1300 °C. / The increase of operating temperature of gas turbine engines is an issue of interest for the aeronautic industry. A solution is the enhancement of thermal insulation properties of thermal barrier coatings (TBCs). The present work is related to suspension plasma spraying process (SPS) that allows to consider significant improvements for the next generation of TBC systems, compared to the currently used process, namely electron beam physical vapor deposition (EB-PVD). Indeed, SPS process can produce columnar microstructures able to provide high thermo-mechanical compliance. A microstructural study led to identify parameters which impacted the coating morphology (column size, distribution, and compaction). Two optimized yttria-stabilized zirconia (YSZ) microstructures were carefully characterized to highlight SPS process advantages. Low thermal conductivities (< 1 W.m-1.K-1) were obtained within a large temperature range (25 °C – 1100 °C), compared to EB-PVD YSZ coatings (1,3 – 1,5 W.m-1.K-1). Thermal lifetime was estimated thanks to thermal cyclic fatigue tests. A similar level of thermal lifetime was reached with SPS coatings compared to EB-PVD one. Some SPS columnar coatings even showed more than 2000 cycles to failure. The ability of SPS to perform multifunctional systems, including a YSZ columnar structure with a homogeneous Gd2Zr2O7 coating on the top, was investigated. This architecture must provide a chemical protection to CMAS (CaO–MgO–Al2O3–SiO2) aggressions. These contaminants would impede the increase of temperature in next generation of gas turbine engines. The anti-CMAS behavior was assessed for SPS Gd2Zr2O7 coatings until 1300 °C.
|
19 |
Contribution à l’étude du soudage MIG-MAG sous mélanges Ar-CO₂-O₂ : diagnostics physiques et physico-chimiques du milieu / Contribution to the study of the MIG-MAG welding under mixture Ar-CO₂-O₂ : physical and physico-chemical diagnosticsCastillon, Quentin 12 October 2016 (has links)
Le soudage à l’arc avec fil fusible est un procédé très utilisé, mais la compréhension des mécanismes régissant son fonctionnement comporte toujours quelques interrogations compte tenu de sa complexité. La composition du gaz de protection a une très forte influence sur le procédé : l’ajout de gaz actif modifie, par exemple, le courant nécessaire à la transition entre les différents régimes et est responsable de l’apparition d’oxyde de fer (gangue) à l’extrémité du fil fusible. Pour mener à bien l’étude du soudage MIG-MAG sous mélanges Ar-CO₂-O₂, plusieurs études sont réalisées pour caractériser et mieux comprendre les phénomènes physico-chimiques qui gouvernent le soudage MIG-MAG afin d’optimiser à terme le procédé. Un diagnostic spectroscopique, avec la mise en place d’un système d’acquisition composé de deux spectromètres qui permet d’enregistrer simultanément les raies spectrales de fer et d’argon, permet d’évaluer les distributions radiales de température et densité électronique dans la colonne de plasma. Une étude par cinématographie rapide est également menée pour tenter d’évaluer la formation et l’écoulement de la couche d’oxyde apparaissant en régime globulaire à la surface de l’anode fusible. Et enfin, des analyses micrographiques des électrodes sont réalisées pour étudier l’influence des modifications chimiques et structurales sur le comportement général du procédé pour différents types de paramètres utilisés. Les conséquences d’un changement de gaz de protection sont également appréhendées : Ar-CO₂, Ar-O₂ et Ar-CO₂-O₂. Il s’avère que la température électronique de l’arc évolue en présence d’oxygène dans le gaz de protection et que la modification du gaz actif modifie le type d’oxyde de fer formé. / The arc welding with consumable wire is a process widely used, but understanding the mechanisms governing its operation still has some questions given its complexity. The composition of the shielding gas has a very strong influence on the process: the addition of active gas changes, for example, the current necessary for the transition between the different metal transfers and is responsible for the appearance of an iron oxide (gangue) at the end of the consumable wire. To carry out the study of MIG-MAG welding under mixtures Ar-CO₂-O₂, several studies are performed to characterize and understand the physical and chemical phenomena that govern the MIG-MAG welding to optimize the process. A spectroscopic diagnosis, with the establishment of an acquisition system consisting of two spectrometers to record simultaneously the iron and argon spectral lines, allows to estimate the radial distributions of temperature and electron density in the plasma column. A study by rapid cinematography is also conducted to try to estimate the formation and flow of the iron oxide layer appearing in globular regime on the surface of the anode consumable. And finally, micrographic analyzes of the electrodes are made to study the influence of chemical and structural changes on the general behavior of the process for different types of parameters used. The consequences of a shielding gas change are also apprehended: Ar-CO₂, Ar-O₂ and Ar-CO₂-O₂. It turns out that the electron temperature of the arc changes in the presence of oxygen in the shielding gas and the change of the active gas modifies the type of iron oxide formed.
|
20 |
Deposition and adsorption of organic matter in the sub-monolayer range studied by experimental and numerical techniques / Étude de la déposition et de l'absorption de la matière organique à l'échelle subatomique par des techniques expérimentales et de simulation numériqueTurgut, Canan 05 March 2015 (has links)
Les traitements plasma présentent un outil efficace, économique et écologique pour la fonctionnalisation de surfaces. Pour cette technique, l’étude du dépôt et de l’adhésion de molécules et précurseurs dans le régime de la sous-monocouche présente un intérêt majeur, car elle définit les propriétés de la surface et l’adhésion de la couche déposée sur le substrat. L’adhésion des molécules lors de la phase initiale du dépôt est contrôlée par les espèces dans le plasma ainsi que par leurs distributions énergétiques et angulaires. Dans le cadre de ce projet, une approche multidisciplinaire combinant calculs DFT et techniques expérimentales pour la préparation et la caractérisation des dépôts dans la sous-monocouche a été utilisée. Des dépôts de PS et PMMA, préparés par bombardement d’Ar sur une surface d’Ag, ont été caractérisés par XPS et ToF-SIMS. La quantité de matière déposée augmente bien avec le temps de dépôt, ou la dose d’irradiation. Les analyses par TOF-SIMS ont également montré que la proportion des grands fragments augmente au détriment des petits. Ceci est contraire aux résultats attendus et peut seulement être expliqué par la recombinaison de petits fragments sur la surface du collecteur. Cette hypothèse est supporté des calculs DFT qui ont montré que l’énergie d’adsorption des petits fragments est plus grande que celle des grands et, par conséquent, leur probabilité d’adsorption doit être également plus élevée. Les calculs DFT ont été étendus sur d’autres substrats, notamment du Si, Pt et Al2O3 et ont montrés que l’énergie d’adhésion est la plus élevée sur Si et Pt / Plasma surface treatments present an efficient, economical and ecological tool for surface functionalization. For this technique the deposition and adhesion of molecules and precursors in the sub-monolayer range are of utmost interest, since this layer defines the surface properties and the adhesion between deposit and substrate. The species in the plasma and their energy and angular distributions control the deposition process. To get insights into the latter, a multidisciplinary approach combining DFT calculations with experimental techniques is used for the preparation and characterisation of sub-monolayer deposits of PS and PMMA. The deposits are prepared by sputter deposition using an Ar beam and analysed by ToF-SIMS and XPS. The amount of deposited matter increases well with deposition time or fluence. ToF-SIMS analyses showed also that the proportion of large fragments on the collector surface is increasing with fluence, although the opposite was expected. This can only be explained by the recombination of smaller fragments to form larger ones. This hypothesis is supported by DFT calculations which showed that the adsorption energy, and hence the adsorption probability, is higher for the small fragments than for the large ones. DFT calculations have been extended to Si, Pt and Al2O3 substrates, showing that adsorption energies are highest for Si and Pt
|
Page generated in 0.093 seconds