401 |
Prédiction du mouvement humain pour la robotique collaborative : du geste accompagné au mouvement corps entier / Movement Prediction for human-robot collaboration : from simple gesture to whole-body movementDermy, Oriane 17 December 2018 (has links)
Cette thèse se situe à l’intersection de l’apprentissage automatique et de la robotique humanoïde, dans le domaine de la robotique collaborative. Elle se focalise sur les interactions non verbales humain-robot, en particulier sur l’interaction gestuelle. La prédiction de l’intention, la compréhension et la reproduction de gestes sont les questions centrales de cette thèse. Dans un premier temps, le robot apprend des gestes par démonstration : un utilisateur prend le bras du robot et lui fait réaliser les gestes à apprendre plusieurs fois. Le robot doit alors reproduire ces différents mouvements tout en les généralisant pour les adapter au contexte. Pour cela, à l’aide de ses capteurs proprioceptifs, il interprète les signaux perçus pour comprendre le mouvement guidé par l’utilisateur, afin de pouvoir en générer des similaires. Dans un second temps, le robot apprend à reconnaître l’intention de l’humain avec lequel il interagit, à partir des gestes que ce dernier initie. Le robot produit ensuite des gestes adaptés à la situation et correspondant aux attentes de l’utilisateur. Cela nécessite que le robot comprenne la gestuelle de l’utilisateur. Pour cela, différentes modalités perceptives ont été explorées. À l’aide de capteurs proprioceptifs, le robot ressent les gestes de l’utilisateur au travers de son propre corps : il s’agit alors d’interaction physique humain-robot. À l’aide de capteurs visuels, le robot interprète le mouvement de la tête de l’utilisateur. Enfin, à l’aide de capteurs externes, le robot reconnaît et prédit le mouvement corps entier de l’utilisateur. Dans ce dernier cas, l’utilisateur porte lui-même des capteurs (vêtement X-Sens) qui transmettent sa posture au robot. De plus, le couplage de ces modalités a été étudié. D’un point de vue méthodologique, nous nous sommes focalisés sur les questions d’apprentissage et de reconnaissance de gestes. Une première approche permet de modéliser statistiquement des primitives de mouvements representant les gestes : les ProMPs. La seconde, ajoute à la première du Deep Learning, par l’utilisation d’auto-encodeurs, afin de modéliser des gestes corps entier contenant beaucoup d’informations, tout en permettant une prédiction en temps réel mou. Différents enjeux ont notamment été pris en compte, concernant la prédiction des durées des trajectoires, la réduction de la charge cognitive et motrice imposée à l’utilisateur, le besoin de rapidité (temps réel mou) et de précision dans les prédictions / This thesis lies at the intersection between machine learning and humanoid robotics, under the theme of human-robot interaction and within the cobotics (collaborative robotics) field. It focuses on prediction for non-verbal human-robot interactions, with an emphasis on gestural interaction. The prediction of the intention, understanding, and reproduction of gestures are therefore central topics of this thesis. First, the robots learn gestures by demonstration: a user grabs its arm and makes it perform the gestures to be learned several times. The robot must then be able to reproduce these different movements while generalizing them to adapt them to the situation. To do so, using its proprioceptive sensors, it interprets the perceived signals to understand the user's movement in order to generate similar ones later on. Second, the robot learns to recognize the intention of the human partner based on the gestures that the human initiates. The robot can then perform gestures adapted to the situation and corresponding to the user’s expectations. This requires the robot to understand the user’s gestures. To this end, different perceptual modalities have been explored. Using proprioceptive sensors, the robot feels the user’s gestures through its own body: it is then a question of physical human-robot interaction. Using visual sensors, the robot interprets the movement of the user’s head. Finally, using external sensors, the robot recognizes and predicts the user’s whole body movement. In that case, the user wears sensors (in our case, a wearable motion tracking suit by XSens) that transmit his posture to the robot. In addition, the coupling of these modalities was studied. From a methodological point of view, the learning and the recognition of time series (gestures) have been central to this thesis. In that aspect, two approaches have been developed. The first is based on the statistical modeling of movement primitives (corresponding to gestures) : ProMPs. The second adds Deep Learning to the first one, by using auto-encoders in order to model whole-body gestures containing a lot of information while allowing a prediction in soft real time. Various issues were taken into account during this thesis regarding the creation and development of our methods. These issues revolve around: the prediction of trajectory durations, the reduction of the cognitive and motor load imposed on the user, the need for speed (soft real-time) and accuracy in predictions
|
402 |
Commande en effort robuste et compensation de trajectoire en temps réel pour les robots industriels sous fortes charges : application au soudage par friction malaxage robotisé (RFSW) / Robust force control and path compensation in real time for inductrial robots under high forces : application to robotic friction stir welding (RFSW)Guillo, Mario 13 June 2014 (has links)
Le soudage par friction malaxage (FSW) est un procédé de soudage innovant pour les matériaux à bas point de fusion (aluminium, cuivre…). Il a été breveté en 1992 par l’organisme anglais The Welding Institute (TWI). Depuis plusieurs années, celui-ci se développe dans l’industrie en cherchant à réduire son coût d’investissement. Le principe du FSW est de réaliser un cordon de soudure grâce à un outil animé d’un mouvement de rotation et d’avance. Les niveaux d’efforts et de précision requis contraignent à l’utilisation de machines cartésiennes de grande envergure. L’utilisation des robots industriels est un moyen de réduire les coûts, mais ils ne sont pas conçus pour ce genre d’applications et leur inconvénient majeur réside dans leur manque de rigidité. Ainsi, lorsque l’outil entre en contact avec les pièces à assembler, celui-ci peut dévier de plusieurs millimètres dans différentes directions de l’espace, rendant la mise en oeuvre d’une compensation de la trajectoire du robot obligatoire afin d’obtenir des soudures sans défauts. Le but de cette thèse a été de développer un procédé robotisé robuste. Le premier objectif est la mise en oeuvre d’une commande en effort robuste. En effet, en FSW, le maintien d’un effort axial constant est obligatoire. Le contrôle de cet effort permet de compenser la déviation axiale de l’outil et les défauts de mise en position des pièces à souder. Ainsi, une démarche d’identification et de modélisation afin de créer une commande en effort a été mise en oeuvre. La commande est définie de manière robuste afin d’éviter les réglages de l’asservissement lorsque les outils, les paramètres de soudage ou les trajectoires du robot changent. Une validation expérimentale complète a été réalisée dans le contexte du FSW. Le second objectif de cette thèse a été de développer une compensation de la déviation latérale de l’outil. Contrairement à l’objectif précédent, il n’y a pas d’effort à maintenir pour compenser cette déviation latérale. Dans l’industrie, cette déviation peut être compensée à l’aide d’un système de vision, mais ce dernier comporte de nombreux inconvénients en FSW (réflexion de l’aluminium, non visibilité du joint, coût, mise en oeuvre complexe). Ainsi, dans cette partie, un algorithme de compensation temps réel de la déviation latérale de l’outil a été mis en oeuvre. Celui-ci repose sur l’identification d’un modèle élasto-statique du robot. L’algorithme de compensation de la déviation latérale de l’outil a été couplé à la commande en effort et validé expérimentalement en FSW. La différence avec la majorité des travaux de recherche dans ce domaine est que les procédures d’identification n’utilisent pas de système de mesure 3D (photogrammétrie CCD ou laser de poursuite) dont le coût est un frein indéniable pour beaucoup d’industriels. La démarche est simple à mettre en oeuvre sur un robot industriel du marché actuel, et applicable pour d’autres procédés à contact comme l’usinage ou le polissage. / Friction Stir Welding (FSW) is an innovative welding process for materials with a low melting point (aluminium, copper…). It was patented in 1992 by the English organization The Welding Institute (TWI). For many years, an effort is done to reduce the investment cost for industrial applications. FSW process involves a rotating tool advancing along a path. Currently, gantry-type CNC systems are using for FSW manufacturing. These machines offer a high stiffness and can tolerate the forces during FSW in order to carry out a good weld quality. Industrials robots can reduce the investment cost; however they are not design for these applications. The main limitation is the low stiffness of the robot structure. Consequently, the robot deformation under the high process forces causes tool deviations about several millimeters. The robot path has to be compensated in order to obtain a good weld quality. The aim of this thesis is to develop a robust robotized process. The first goal is to realize a robust force control. During FSW, a constant axial forging force should be applied. Axial tool deviation is compensated with the force control approach. In this way, a modeling and identification method is done in order to design a force controller. The force controller is robust because no tuning is required, even if welding parameters or robot paths change. An experimental validation in FSW is done. The second goal is to realize a compensation of the lateral tool deviation. Unlike the axial deformation, there is no force to maintain for compensate this deviation. In industry, the lateral tool deviation could be compensated with a camera or laser sensor in order to track the weld seam path during welding. However, the cost of a seam tracking device, the aluminium reflexion and the lack of visibility in lap joint configuration are significant drawbacks. In this chapter, a compensation algorithm is designed. An elastostatic model of the robot is used to estimate in real time the deflection of the robot TCP. The compensation algorithm is coupled with the force controller defined previously. Compare with others research works about this topic, identification methods don’t need a 3D measurement system (CCD camera or laser tracker). The cost of such system is a main drawback for industrial applications. In this thesis, identification methods are easy to implement in an industrial robot and available for others processes like machining or polishing.
|
403 |
Conception de commande tolérante aux défauts pour les systèmes multi-agents : application au vol en formation d'une flotte de véhicules autonomes aériens / FDI/FT Methods Design to multi-agent systems : Application to formation control of a fleet of autonomous aerial vehiclesBelkadi, Adel 12 October 2017 (has links)
Ces dernières années, l’émergence des nouvelles technologies tels que la miniaturisation des composants, les dispositifs de communication sans fils, l’augmentation de la taille de stockage et les capacités de calcul, a permis la conception de systèmes multi-agents coopératifs de plus en plus complexes. L’un des plus grands axes de recherche dans cette thématique concerne la commande en formation de flottes de véhicules autonomes. Un grand nombre d’applications et de missions, civiles et militaires, telles que l’exploration, la surveillance, et la maintenance, ont alors été développées et réalisées dans des milieux variés (terre, air, eau). Durant l’exécution de ces tâches, les véhicules doivent interagir avec leur environnement et entre eux pour se coordonner. Les outils de communication disponibles disposent souvent d’une portée limitée. La préservation de la connexion au sein du groupe devient alors un des objectifs à satisfaire pour que la tâche puisse être accomplie avec succès. Une des possibilités pour garantir cette contrainte est le déplacement en formation permettant de préserver les distances et la structure géométrique du groupe. Il est toutefois nécessaire de disposer d’outils et de méthodes d’analyse et de commande de ces types de systèmes afin d’exploiter au maximum leurs potentiels. Cette thèse s’inscrit dans cette direction de recherche en présentant une synthèse et une analyse des systèmes dynamiques multi-agents et plus particulièrement la commande en formation de véhicules autonomes. Les lois de commande développées dans la littérature pour la commande en formation permettent d’accomplir un grand nombre de missions avec un niveau de performance élevé. Toutefois, si un défaut/défaillant apparaît dans la formation, ces lois de commandes peuvent s’avérer très limitées, engendrant un comportement instable du système. Le développement de commandes tolérantes aux défauts devient alors primordial pour maintenir les performances de commande en présence de défauts. Cette problématique sera traitée dans ce mémoire de thèse et concernera le développement et la conception de commandes en formation tolérantes au défaut dévolu à une flotte de véhicules autonomes suivant différente configuration/structuration / In recent years, the emergence of new technologies such as miniaturization of components, wireless communication devices, increased storage size and computing capabilities have allowed the design of increasingly complex cooperative multi-agent systems. One of the main research axes in this topic concerns the formation control of fleets of autonomous vehicles. Many applications and missions, civilian and military, such as exploration, surveillance, and maintenance, were developed and carried out in various environments. During the execution of these tasks, the vehicles must interact with their environment and among themselves to coordinate. The available communication tools are often limited in scope. The preservation of the connection within the group then becomes one of the objectives to be satisfied in order to carry out the task successfully. One of the possibilities to guarantee this constraint is the training displacement, which makes it possible to preserve the distances and the geometrical structure of the group. However, it is necessary to have tools and methods for analyzing and controlling these types of systems in order to make the most of their potential. This thesis is part of this research direction by presenting a synthesis and analysis of multi-agent dynamical systems and more particularly the formation control of autonomous vehicles. The control laws developed in the literature for formation control allow to carry out a large number of missions with a high level of performance. However, if a fault/failure occurs in the training, these control laws can be very limited, resulting in unstable system behavior. The development of fault tolerant controls becomes paramount to maintaining control performance in the presence of faults. This problem will be dealt with in more detail in this thesis and will concern the development and design of Fault tolerant controls devolved to a fleet of autonomous vehicles according to different configuration/structuring
|
404 |
Σθεναρός έλεγχος και αναγνώριση σφαλμάτων για εύκαμπτο ρομποτικό βραχίοναΚαραμολέγκος, Νικόλαος, Σταθόπουλος, Γεώργιος 11 January 2010 (has links)
Ο σκοπός αυτής της διπλωματικής είναι η ανάπτυξη ενός προσαρμοστικού ελεγκτή για έναν εύκαμπτο ρομποτικό βραχίονα. Οι μετρήσεις του συστήματος θεωρούνται πως παρεμβάλλονται από θόρυβο, του οποίου τα όρια είναι γνωστά εξ’αρχής. Ένας Set Memebership εκτιμητής υπολογίζει το δυνατό set (ορθότοπο) μέσα στο οποίο βρίσκονται οι τιμές του διανύσματος των παραμέτρων. Από τις ακμές του ορθοτόπου αυτού προκύπτουν τα όρια μέσα στα οποία βρίσκονται οι παράμετροι του συστήματος, τα οποία χρησιμοποιούνται για τον υπολογισμό της αβεβαιότητας της εκτίμησης της εξόδου του συστήματος. Ο ελεγκτής καθορίζει τα κέρδη του μέσα σε μια online βελτιστοποίηση ενός κόστους, το οποίο βάζει κάποια βάρη στην προσπάθεια του ελέγχου (control effort), στην προκλημένη αβεβαιότητα στην έξοδο του συστήματος αλλά και στο σφάλμα παρακολούθησης της εξόδου με ένα σήμα αναφοράς. Μετά την εφαρμογή του ελεγκτή, ελέγχεται η ευστάθεια των οριακών κλειστών συστημάτων που προκύπτουν από την εφαρμογή κάθε πιθανού νόμου ελέγχου. Εξετάζεται επίσης η συμπεριφορά του Set Memebership εκτιμητή σε περίπτωση σφάλματος, δηλαδή στην περίπτωση που το σύστημά μας αλλάζει καθώς δουλεύει ο έλεγχος. / The development of an adaptive controller for a flexible link manipulator is the subject of this diploma thesis. The system’s measurements are assumed to be corrupted with noise of a priori known bounds. A Set Membership Identifier computes the feasible set (orthotope) within which the parameter vector resides. The orthotope’s vertices provide the parameter-vector’s bounds, which are used to compute the predicted system-output uncertainty. The controller tunes its gains through an on-line minimization of a cost that penalizes the control effort, the induced uncertainty on the system output, and the tracking error. After the application of the controller, the stability of the ‘extreme’ closed loop systems, derived from every possible control law, is checked. The behavior of the Set Membership Identifier is checked in the case where a fault occurs, which means that there is a change in our system’s structure while the controller is functioning.
|
405 |
Πλοήγηση, σχεδιασμός τροχιάς και έλεγχος κινούμενου ρομπότΑρβανιτάκης, Ιωάννης 11 January 2010 (has links)
Η παρούσα διπλωματική ασχολείται με την πλοήγηση κινούμενου ρομπότ. Δεδομένου ενός χώρου με εμπόδια και στόχο, ασχολείται με την δημιουργία ενός αλγορίθμου για την οδήγηση του ρομπότ διαμέσου του χώρου στο στόχο, αποφεύγοντας τα εμπόδια κατά την κίνηση. Επικεντρώνεται σε δίτροχα ρομπότ και αναλύει βήμα βήμα την διαδικασία εύρεση μονοπατιού, δημιουργία τροχιάς και έλεγχο του ρομπότ. / The present thesis deals with the navigation of moving robots. Granted an area with obstacles and target, it deals with the creation of an algorithm for guiding the robot through space at target, avoiding obstacles during movement. It focuses on two-wheeled robots and analyzes step by step the process of finding a path, creating the trajectory and controlling the robot.
|
406 |
Γενετικοί αλγόριθμοι στον σχεδιασμό ρομποτικών τροχιών / Genetic algorithms in robot trajectory planningΝεάρχου, Ανδρέας 10 August 2011 (has links)
Η διατριβή αυτή εξετάζει την χρήση γενετικών αλγορίθμων (ΓΑ) για την επίλυση του προβλήματος του σχεδιασμού κίνησης ρομποτικών συστημάτων τα οποία εκτελούν εργασίες εφοδιαστικής (όπως εργασίες λήψης και μεταφοράς από σημείο σε σημείο, μετακίνησης υλικών επί συνεχούς διαδρομής, κ.α.) στα πλαίσια λειτουργίας τους εντός ενός ευέλικτου συστήματος παραγωγής (ΕΣΠ). Το πρόβλημα του σχεδιασμού κίνησης (ΠΣΚ) είναι ένα υπολογιστικά άλυτο συνδυαστικό πρόβλημα βελτιστοποίησης (έχει αποδειχτεί PSPACE-hard) το οποίο μπορεί να οριστεί ως εξής: «Πως μπορεί ένα ρομπότ να αποφασίσει ποιες κινήσεις πρέπει να αποδώσει προκειμένου να εκτελέσει με επιτυχία επιθυμητές εργασίες στο περιβάλλον εργασίας του;» Προς τον σκοπό αυτό αναπτύχθηκε ένας αριθμός νέων, πρωτότυπων αλγορίθμων εμπνευσμένων από τη Βιολογία των οποίων η απόδοση μετρήθηκε τόσο μέσω πειραμάτων προσομοιωμένων σε υπολογιστή, όσο και σε πραγματικά ρομποτικά περιβάλλοντα στο εργαστήριο του Τμήματος. Συγκρινόμενοι με τις κλασσικές από τη βιβλιογραφία μεθόδους επίλυσης του ΠΣΚ, οι ΓΑ βρέθηκαν ανώτεροι τόσο από πλευράς ποιότητας των λύσεων που παρήγαγαν, όσο και από πλευράς ταχύτητας σύγκλησης (δηλαδή του χρόνου που χρειάστηκαν για τον εντοπισμό αυτών των λύσεων). Επιπρόσθετα, εξετάστηκαν και αντιμετωπίστηκαν με επιτυχία πολύπλοκα προβλήματα κινηματικής που αναφύονται κατά τον σχεδιασμό κίνησης ρομποτικών βραχιόνων σε ένα ΕΣΠ, όπως: Το αντίστροφο κινηματικό πρόβλημα ρομποτικών βραχιόνων με πλεονάζοντες βαθμούς ελευθερίας, η μεγιστοποίηση της επιδεξιότητας του ρομπότ κατά την εκτέλεση των εργασιών του και η παραγωγή με το άκρο εργασίας του ρομπότ ασφαλών και αξιόπιστων τροχιών επί προκαθορισμένων επιθυμητών διαδρομών. Η επίλυση αυτών των προβλημάτων είναι πολύ σημαντική σε πολλές πραγματικές βιομηχανικές εφαρμογές όπως εργασίες συγκόλλησης, βαψίματος ή επάλειψης με ψεκασμό, λείανσης, κ.α. / The use of genetic algorithms (GAs) for the solution of motion planning of robotic systems which perform logistics operations within a flexible manufacturing system (FMS), as well as, logistics tasks in indoors hazardous environments was investigated. Robot motion planning (RMP) is a PSPACE-hard combinatorial problem loosely stated as: How can a robot decide what motions to perform in order to achieve desired tasks in its environment? A number of new biological-inspired approaches were implemented and evaluated on computer simulated environments, as well as, on real industrial environments. In comparison to existing RMP methods, GAs were found superior in terms of both solutions quality and speed of convergence. Furthermore, focusing on RMP of robot manipulators, the proposed approaches tackled with high success difficult kinematics problems such as: the inverse kinematics for robots with redundant degrees of freedom, the maximization of robot’s manipulability, the path following by the robot’s end-effector on demanded trajectories.
|
407 |
Logistique hospitalière à l’aide de robots mobiles reconfigurables / Logistics in hospitals using mobile reconfigurable robotsBaalbaki, Hassan 09 September 2011 (has links)
Ce manuscrit expose notre travail dans le cadre du projet IWARD et détaille la couche de gestion et de décision du groupement de robots. Ce projet avait comme objectif d’assister le personnel médical dans leur travail, ceci est réalisé en utilisant des robots mobiles, reconfigurables, et rechargeables. Ces robots sont conçus pour effectuer des taches logistiques comme : Le transport de médicaments, le nettoyage, le guidage des patients, la surveillance et la téléconsultation. Dans la première partie de la thèse nous présenterons le problème stratégique qui consiste à déterminer les plannings de rechargement des robots, la configuration des robots opérationnels ainsi que la localisation des stations d’attentes des robots lorsqu’ils sont en état de veille. Différentes hiérarchies à plusieurs niveaux de décisions, sont formulées comme des programmes linéaires en nombres entiers. Des formulations utilisant l’approche de génération de colonnes sont aussi développées pour résoudre ces problèmes. Dans la deuxième partie, le problème tactique est exposé, ceci consiste à affecter les taches arrivantes aux différents robots et d’ordonnancer dynamiquement l’exécution ces missions. Deux approches sont inspectées une version centralisée utilisant les algorithmes évolutionnaires et une autre version distribuée utilisant les algorithmes d’enchères inversées. Afin de mettre à l épreuve ces deux approches, une simulation a événements discrets a été conçue et développée spécifiquement pour le projet, permettant ainsi d’évaluer ces deux approches. / Due to the expansion of the life duration and the shortage of medical personal in hospitals the EU funded IWARD project as part of the IFP6 program. The aims of this project were to assist the medical personnel in logistic and non medical tasks (transport, cleaning, environmental monitoring, guidance and tele-monitoring) through the usage of mobile, reconfigurable, rechargeable robots, thus letting the Medical staff to concentrate on medical aspects of their work.This thesis was part of this project, and our work consisted on developing a decision making framework for the team of robots.In the first part of the thesis, we address the strategic decisions essentially the: (i) the robots’ home station location problem, (ii) Robot‘s reconfiguration problems and (iii) Robots recharging scheduling. We formulate those problems as a linear problems and we propose to solve them using Mixed Integer Programming (MIP). We also present a formulation using a column generation approach to solve those problems.In the later part we address the tactical problems, mainly the mission assignment, the mission scheduling and rescheduling. We present two different approaches; a centralized decision finder implemented using genetic algorithms. And a decentralized approach using auction like and market based algorithms in order to provided collaborative decision making framework.Finally we compare those two approaches using a custom made discrete event simulation (DES).
|
408 |
Investigations on upper limb prosthesis control with an active elbow / Etude de la commande d'une prothèse de membre supérieur incluant un coude actifMérad, Manelle 01 December 2017 (has links)
Les progrès de la mécatronique ont permis d’améliorer les prothèses du membre supérieur en augmentant le catalogue des mouvements prothétiques. Cependant, un fossé se creuse entre les capacités technologiques de la prothèse et leur méthode de contrôle. La commande myoélectrique, qui est la méthode la plus répandue, reste complexe, notamment pour les personnes amputées au niveau trans-huméral qui peuvent avoir un coude actif en plus de la main et du poignet motorisés. Une approche intéressante consiste à utiliser la mobilité du membre résiduel, présente chez la plupart des amputés trans-huméraux, pour contrôler des articulations prothétiques distales comme le coude. Les mouvements du coude sont couplés aux mouvements du membre résiduel selon un modèle de coordination épaule/coude saine. Cette thèse étudie une stratégie de commande d’un coude prothétique utilisant les mouvements du membre résiduel, mesuré par des centrales inertielles, et nos connaissances du contrôle moteur humain. Pour cela, un modèle de la coordination épaule/coude a été construit à partir d’enregistrements de gestes sains de préhension. Ce modèle, implémenté sur un prototype de prothèse, a été testé par 10 individus sains équipés du prototype afin de valider le concept, puis par 6 personnes amputées. Ces dernières ont aussi réalisé la tâche avec une commande myoélectrique conventionnelle afin de comparer les résultats. La commande couplant automatiquement les mouvements de l’épaule et du coude s’est montrée satisfaisante en termes de facilité d’utilisation et de réduction des stratégies de compensation. / Progress in mechatronics has enabled the improvement of upper limb prosthetics increasing the grasps catalog. However, a gap has been growing between the prosthesis technological possibilities and the methods to control it. Indeed, common myoelectric control strategy remains complex, especially for transhumeral amputees who can have an active elbow in addition to a prosthetic wrist and hand. Since most transhumeral amputees have a mobile residual limb, an interesting approach aims at utilizing this mobility to control intermediate prosthetic joints, like the elbow, based on the shoulder/elbow coordination observed in healthy movements. This thesis investigates the possibility of controlling an active prosthetic elbow using the residual limb motion, measured with inertial measurement units, and knowledge of the human motor control. A primary focus has been targeting the reaching movement for which a model has been built using regression tools and kinematic data from several healthy individuals. The model, implemented on a prosthesis prototype, has been tested with 10 healthy participants wearing the prototype to validate the concept, and with 6 amputated individuals. These participants also performed the task with a conventional myoelectric control strategy for comparison purpose. The results show that the inter-joint coordination-based control strategy is satisfying in terms of intuitiveness and reduction of the compensatory strategies.
|
409 |
Modélisation, observation et commande de robots vasculaires magnétiques / Modeling, observation and control of a vascular magnetic robotsSadelli, Lounis 25 November 2016 (has links)
La chirurgie minimalement invasive est un domaine de recherche très actif puisqu’elle permet d’envisagerdes thérapies ciblées et des diagnostics in situ tout en minimisant traumatismes, effets secondaires et tempsde convalescence. En particulier, l’utilisation de systèmes miniaturisés actionnés à distance ouvre la voie àune navigation dans le système cardiovasculaire, permettant ainsi le ciblage et l’intervention sur zones dif-ficilement accessibles du corps humain. L’objectif de cette thèse est de proposer i) un état de l’art sur lamodélisation des forces s’exerçant sur un ou plusieurs microrobots naviguant dans des vaisseaux sanguins,ii) des représentations d’état exploitables à des fins de commande et d’observation, iii) différentes synthèsesde lois de commande pour stabiliser un ou plusieurs microrobots le long d’une trajectoire de référence, iv)des observateurs d’état pour reconstruire les états non mesurables du système. Un microrobot magnétiquenaviguant dans un vaisseau sanguin subit la force de traînée, les forces surfaciques, de contact, d’interactionmagnétique, et son poids apparent. Son actionnement est assuré par l’application de champs ou de gradientsde champ magnétiques, et sa localisation est assurée par un imageur médical. La dynamique du ou desmicrorobots (système réduit) est sous forme d’état non linéaire affine en la commande avec dérive, et dé-pend de plusieurs paramètres physiologiques incertains, en particulier de la vitesse du sang, qui est difficileà mesurer. La dynamique du flux sanguin (système fluidique) est alors modélisée sous forme d’une repré-sentation d’état autonome, combinée avec le système réduit pour aboutir au système étendu. L’objectif decommande est de stabiliser les états du système réduit le long d’une trajectoire de référence. Une commandestabilisante est synthétisée par backstepping, mais elle n’est pas utilisable en l’état. Des observateurs baséssur le théorème de la valeur moyenne et sur une immersion sont synthétisés respectivement dans le cas oùla pulsation cardiaque est connue ou non. La stabilité du retour de sortie est alors démontrée. La stabilitéet la robustesse aux bruits de mesure, aux incertitudes paramétriques, et aux erreurs de modélisation desapproches proposées sont alors illustrées par des simulations. / Minimally invasive surgery is an active research area since such systems have the potential to perform complex surgical procedures such as targeted therapies or in situ diagnosis, while minimizing trauma, side effects and recovery time. Miniaturized systems magnetically propelled by remote actuation can achieve swimming through the blood vessels network in order to provide targeted therapy, even for hard-to-reach human organs. This PhD thesis aims at addressing i) a review on the modeling of microrobots immersed in blood vessels, ii) a classification of the state space forms of such systems, iii) the synthesis of state feedbacks ensuring the stabilization of the microrobots along a reference trajectory, iv) the synthesis of observers to rebuild the unmeasured state variables. Magnetic microrobots swimming in a blood vessel face the hydrodynamic drag, surfacic and contact forces, magnetic interactions, and their apparent weight. These untethered robots are actuated by magnetic fields or magnetic gradients generation, and their localization is ensured by a medical imager. The microrobots dynamics (the so-called reduced system) lead to a nonlinear affine control subsystem with drift, and exhibits many uncertain physiological parameters, such as the blood velocity which can hardly be measured. The blood flow dynamics (the so-called fluidic system) are then modeled as an autonomous subsystem. These two subsystems result in an extended system describing the whole (robot and fluid) dynamics. The control objective is to stabilize the state of the reduced system along a reference trajectory, which is performed by an adaptive backstepping synthesis. Yet the full state is not accessible. We then synthesize either MVT or immersion based observers for the extended system, when the blood pulsation is either known or not. The output feedback stability is then proved. The stability and robustness to output noise, parametric uncertainty, and modeling errors are then illustrated by simulations.
|
410 |
Survivable cloud multi-robotics framework for heterogeneous environmentsRamharuk, Vikash 02 1900 (has links)
The emergence of cloud computing has transformed the potential of robotics by enabling multi-robotic teams to fulfil complex tasks in the cloud. This paradigm is known as “cloud robotics” and relieves robots from hardware and software limitations, as large amounts of available resources and parallel computing capabilities are available in the cloud. The introduction of cloud-enabled robots alleviates the need for computationally intensive robots to be built, as many, if not all, of the CPU-intensive tasks can be offloaded into the cloud, resulting in multi-robots that require much less power, energy consumption and on-board processing units.
While the benefits of cloud robotics are clearly evident and have resulted in an increase in interest among the scientific community, one of the biggest challenges of cloud robotics is the inherent communication challenges brought about by disconnections between the multi-robotic system and the cloud. The communication delays brought about by the cloud disconnection results in robots not being able to receive and transmit data to the physical cloud. The unavailability of these robotic services in certain instances could prove fatal in a heterogeneous environment that requires multi-robotic teams to assist with the saving of human lives. This niche area is relatively unexplored in the literature.
This work serves to assist with the challenge of disconnection in cloud robotics by proposing a survivable cloud multi-robotics (SCMR) framework for heterogeneous environments. The SCMR framework leverages the combination of a virtual ad hoc network formed by the robot-to-robot communication and a physical cloud infrastructure formed by the robot-to-cloud communications. The Quality of Service (QoS) on the SCMR framework is tested and validated by determining the optimal energy utilization and Time of Response (ToR) on drivability analysis with and without cloud connection. The experimental results demonstrate that the proposed framework is feasible for current multi-robotic applications and shows the survivability aspect of the framework in instances of cloud disconnection. / School of Computing / M.Sc. (Computer Science)
|
Page generated in 0.0504 seconds