• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 39
  • 20
  • 13
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Retrogression-reaging and hot forming of AA7075

Ivanoff, Thomas Alexander 07 October 2014 (has links)
The retrogression-reaging (RRA) and hot forming behavior of AA7075 were studied. AA7075 is a high-strength alloy used in applications where weight is of particular importance, such as in automobiles. Like many of the high-strength aluminum alloys, AA7075 requires elevated temperature forming to achieve ductility comparable to steels at room temperature. Since AA7075 is a precipitation hardening alloy, heat treatments during forming and production need to be closely controlled to limit any loss of strength due to changes in the microstructure. Two new forming concepts are introduced to explore the feasibility of forming AA7075 in manners compatible with current automotive manufacturing processes. They are RRA forming and solution forming. These concepts seek to improve upon the room-temperature formability of AA7075-T6 and incorporate the paint-bake cycle (PBC) into the heat treatment process. The PBC is a mandatory heat treatment used to cure the paint applied to automobiles during production. Currently, the PBC is conducted at 180 °C for 30 minutes. RRA behavior was studied with molten salt bath treatments between 200 and 350 °C. The PBC was used in lieu of the standard 24 hour reaging treatment conducted at 121 °C. It was determined that retrogression treating below 250 °C was acceptable for RRA forming, with retrogressing at 200 °C producing the hardest material after reaging by the PBC. The formability of AA7075-T6 during RRA forming was evaluated by tensile testing at 200 and 225 °C. Ductility of AA7075-T6 at RRA forming temperatures was double compared to those produced at room temperature. RRA forming was demonstrated to achieve this improved ductility and a final material hardness after the PBC of only slightly less than the peak-aged condition. In addition, solution forming behavior was studied at 480 °C. Solution forming can increase ductility compared to RRA forming, but it requires aging at 121 °C prior to the PBC to produce peak-aged hardness. / text
2

Measurement of ultrashort laser pulses using the Second-Harmonic Generation Frequency-Resolved Optical-Gating : Characterization of an ultrashort laser pulse

José Eduardo, Barqueros Muñoz January 2012 (has links)
Communication technologies are continuosly evolving since were invented the telegraph. Nowadays, one of the most interesting and relatively youngest field of telecommunications are the optical communications. The search of the shortest event ever created to measure very fast/short events is now possible because of the Light Amplification by Stimulated Emission of Radiation, longer known as laser.So well, we need to find the shortest event but we need to know how to measure it, since it is supposed that there is not a shorter event. So we need the pulse to measure itself, and its sound as we need to do a kind of autocorrelation.In order to measure a pulse, we need to get its intensity and phase in either the time or frequency domains. And, before the Frequency-Resolved Optical-Gating appearance, it was done with autocorrelation (time-domain) and spectrum (frequency-domain).
3

Particle cracking damage evolution in 7075 wrought aluminum alloy under monotonic and cyclic loading conditions

Harris, James Joel 22 November 2005 (has links)
7xxx series Al-Zn-Mg-Cu-base wrought Al-alloy products are widely used for aerospace structural applications where monotonic and cyclic mechanical properties are of prime concern. Microstructure of these commercial alloys usually contains brittle coarse constituent particles or inclusions of Fe-rich intermetallic compounds and Mg2Si, typically in the size range of 1 to 50 micron. Plastic deformation and fracture of 7xxx series alloys (as well as of numerous other wrought Al-alloys) is associated with gradual microstructural damage accumulation that involves cracking of the coarse constituent particles, growth of voids around the cracked particles, and the void coalescence. To understand and model the microstructural damage evolution processes such particle cracking, quantitative microstructural data associated with the damage nucleation are required under monotonic as well as cyclic loading conditions. In the past quantitative characterization of particle cracking damage in these alloys has been problematic. However, with recent advances in digital image analysis and stereology based techniques, it is now possible to quantitatively characterize the damage nucleation in hot-rolled 7075(T6) Al-alloy (a typical alloy of 7xxx series) due to cracking of the Fe-rich coarse constituent particles. The objectives of this work are: * Quantitative characterization of the cracking of Fe-rich constituent particles as a function of strain under quasi-static loading. This involves measurements of number density of cracked particles, volume fraction of the cracked particles, their size, shape, and orientation distribution, as well as nearest neighbor distribution and two-point correlation functions to quantify spatial dispersion of the cracked particles in a series of interrupted uniaxial tensile test specimens at different strain levels. * Quantitative characterization of the cracking of Fe-rich constituent particles under cyclic loading to study the differences between the particle cracking damage due to monotonic and cyclic loading.
4

Modeling microstructurally small crack growth in Al 7075-T6

Hennessey, Conor Daniel 21 September 2015 (has links)
Fatigue of metals is a problem that affects almost all sectors of industry, from energy to transportation, and failures to account for fatigue or incorrect estimations of service life have cost many lives. To mitigate such fatigue failures, engineers must be able to reliably predict the fatigue life of components under service conditions. Great progress has been made in this regard in the past 40 years; however one aspect of fatigue that is still being actively researched is the behavior of microstructurally small cracks (MSCs), which can diverge significantly from that of long cracks. The portion of life spent nucleating and growing a MSC over the first few grains/phases can consume over 90% of the total fatigue life under High Cycle Fatigue (HCF) conditions and is the primary source of the scatter in fatigue lives. Therefore, the development of robust fatigue design methodologies requires that the MSC regime of crack growth can be adequately modeled. The growth of microstructurally small cracks is dominated by influence of the local heterogeneity of the microstructure and is a highly complex process. In order to successfully model the growth of these microstructurally small cracks (MSCs), two computational frameworks are necessary. First, the local behavior of the material must be modeled, necessitating a constitutive relation with resolution on the scale of grain size. Second, a physically based model for the nucleation and growth of microstructurally small fatigue cracks is needed. The overall objective of this thesis is best summarized as the introduction these two computational frameworks, a crystal plasticity constitutive model and fatigue model, specifically for aluminum alloy 7075-T6, a high-strength, low density, precipitation hardened alloy used extensively in aerospace applications. Results are presented from simulations conducted to study the predicted crack growth under a variety of loading conditions and applied strain ratios, including uniaxial tension-compression and simple shear at a range of applied strain amplitudes. Results from the model are compared to experimental results obtained by other researchers under similar loading conditions. A modified fatigue crack growth algorithm that captures the early transition to Stage II growth in this alloy will also be presented.
5

Optimisation Of Process Parameters For Spray Deposition And Analyses Of Spray Deposits For 7075 Al Alloy

Jeyakumar, M 07 1900 (has links) (PDF)
No description available.
6

Cinética de amolecimento da liga de alumí­nio AA 7075 durante recozimento após laminação a frio. / Softening behavior during annealing of col-rolled aluminium alloy 7075.

Souza, Saul Hissaci de 06 February 2018 (has links)
O presente trabalho apresenta um estudo sobre o amolecimento após laminação e recozimento da AA 7075, uma liga de alumínio endurecível por precipitação . As amostras recebidas no estado T6 foram caracterizadas com auxílio das técnicas de microscopia óptica de luz polarizada, microscopia eletrônica de varredura, espectroscopia de raios X por dispersão de energia, difração de raios X, condutividade elétrica e dureza Vickers . As amostras foram então separadas em dois grupos. O primeiro sofreu um tratamento térmico de solubilização (485°C por 5 horas) enquanto o segundo foi submetido a um tratamento de superenvelhecimento (300°C por 5 horas) e, em seguida, ambos os grupos de amostras tratadas foram novamente caracterizadas pelas técnicas descritas anteriormente (exceto microscopia óptica) e laminadas a frio. Durante a etapa de laminação, constatou-se a dificuldade em causar deformação plástica na amostra solubilizada. Optou-se em conduzir o estudo com as amostras superenvelhecidas, que foram laminadas com reduções de 45%, 75% e 90% em espessura. A seguir, estas foram submetidas a tratamentos isotérmicos e isócronos com o objetivo de estudar a cinética de amolecimento das amostras deformadas a frio. As amostras superenvelhecidas e deformadas em 45% em redução de espessura, apresentaram somente indícios de início de recristalização (nas amostras tratadas a partir de 250°C por 1 hora) via EBSD, sendo que a maior parte do amolecimento pode ser explicada pelo mecanismo de recuperação. Além disso, a cinética de amolecimento das amostras recozidas nesse grupo apresentaram boa concordância com a lei logarítmica proposta por Kulhmann (1948) e (coincidentemente) também com o consolidado modelo JMAK. As amostras superenvelhecidas e deformadas em 75% e 90% apresentaram comportamento similar (isso é, principalmente recuperação) para recozimentos realizados em temperaturas de até 350°C por uma hora. Recozimentos realizados a 400°C promoveram a recristalização total das amostras desse grupo para tempos inferiores a 15 minutos. Dessa forma, não foi possível estudar a cinética de recristalização para esse segundo grupo de amostras. / This work presents a study about the softening after cold rolling and annealing of aluminium alloy AA 7075. Firstly, polarized light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrical conductivity and Vickers hardness have been used at the starting material (T6). The samples were then separated in two groups. The former underwent a solubilization heat treatment (485°C for 5 hours) whilst the latter underwent an overaging treatment to grow up the existing precipitates (300°C for 5 hours). Both groups of treated samples were again characterized by the techniques described above (except optical microscopy). In the rolling stage, the difficulty in straining the solubilized sample and the relative ease for doing so to the overaged sample was verified. It was therefore decided to conduct the study with the samples of the second group, which were 45%, 75% and 90% rolled in thickness reduction. Then, they underwent isothermal and isochronous treatments in order to study its softening kinetics by Vickers hardness measurements, polarized light optic microscopy and EBSD. The overaged and rolled samples (45% in thickness reduction) didn\'t present evidences of recrystallization except by very few grains found via EBSD (in samples treated from 250 ° C for 1 hour). So, most of the observed softening can be explained by recovery. In addition, the softening kinetics of the annealed samples in this group showed good agreement with the logarithmic law proposed by Kulhmann (1948) and (coincidentally) also with the consolidated JMAK model. The overaged samples that underwent thickness reduction of 75% and 90% showed a similar behavior (that is, mainly recovery) for annealing at temperatures up to 350 ° C. Annealing at 400 ° C promoted total recrystallization of the samples from this group (75% and 90% in thickness reduction) in less than 15 minutes. Thus, it was not possible to study the kinetics of recrystallization for this second group of samples.
7

Residual Stress Reduction During Quenching of Wrought 7075 Aluminum Alloy

Mitchell, Ian D 12 May 2004 (has links)
The finite difference method was used to calculate the variable heat transfer coefficient required to maximize mechanical properties of heat treated wrought 7075 aluminum alloy without causing residual stress. Quench simulation enabled determination of maximum surface heat flux bordering on inducing plastic flow in the work piece. Quench Factor Analysis was used to correlate cylinder diameter to yield strength in the T73 condition. It was found that the maximum bar diameter capable of being quenched without residual stress while meeting military mechanical design minimums is 2". It was also found that the cooling rate must increase exponentially and that the maximum cooling rate needed to achieve minimum mechanical properties is well within the capability of metals heat treatment industry.
8

Optimisation des paramètres du procédé de thixoforgeage des alliages d'aluminium 7075 à haute fraction solide

Vaneetveld, Grégory 22 September 2009 (has links)
La mise en forme de l'alliage d'aluminium de corroyage 7075 de pièces fonctionnelles à géométrie complexe se fait la plupart du temps par usinage. Pour un nombre de pièces important, le coût peut être réduit en réalisant une ébauche par forgeage. Il est cependant plus intéressant de réaliser une ébauche proche des dimensions finales pour limiter l'usinage (aspect near-net-shape). Pour mettre en forme une pièce à géométrie complexe en une seule étape, la résistance à la déformation de la matière doit être suffisamment faible. Cette faible déformation nécessite la génération d'une phase liquide, ce qui introduit des défauts dans l'alliage de corroyage tels que la fissuration à chaud, porosité, retassure, retrait important, macroségrégation solide-liquide. L'apparition de ces défauts peut être réduite en limitant la fraction volumique de la phase liquide à 0.1. AA 7075 étant particulièrement sensible à la fissuration à chaud, un faible retrait est un atout. Nous choisirons le procédé RAP pour obtenir une matière globulaire semi-solide. Ce procédé utilise la recristallisation d'une matière extrudée pour réaliser une matière qui a un comportement rhéofluidifiant-thixotrope. Le procédé de mise en forme de cette matière semi-solide globulaire à faible phase liquide est le thixoforgeage. Des essais de chauffage de la matière extrudée et de filage permettront d'étudier l'influence des divers paramètres du procédé sur l'effort de mise en forme et sur la qualité des pièces produites. Nous adapterons les paramètres de chauffage et de mise en forme sur un outillage spécialement conçu pour le thixoforgeage pour des pièces à géométrie simple et pour des pièces à géométrie complexe. Une étude de l'influence des paramètres sur les caractéristiques mécaniques et sur la qualité des pièces a montré le très bon potentiel de mise en forme de AA 7075 par thixoforgeage.
9

Cinética de amolecimento da liga de alumí­nio AA 7075 durante recozimento após laminação a frio. / Softening behavior during annealing of col-rolled aluminium alloy 7075.

Saul Hissaci de Souza 06 February 2018 (has links)
O presente trabalho apresenta um estudo sobre o amolecimento após laminação e recozimento da AA 7075, uma liga de alumínio endurecível por precipitação . As amostras recebidas no estado T6 foram caracterizadas com auxílio das técnicas de microscopia óptica de luz polarizada, microscopia eletrônica de varredura, espectroscopia de raios X por dispersão de energia, difração de raios X, condutividade elétrica e dureza Vickers . As amostras foram então separadas em dois grupos. O primeiro sofreu um tratamento térmico de solubilização (485°C por 5 horas) enquanto o segundo foi submetido a um tratamento de superenvelhecimento (300°C por 5 horas) e, em seguida, ambos os grupos de amostras tratadas foram novamente caracterizadas pelas técnicas descritas anteriormente (exceto microscopia óptica) e laminadas a frio. Durante a etapa de laminação, constatou-se a dificuldade em causar deformação plástica na amostra solubilizada. Optou-se em conduzir o estudo com as amostras superenvelhecidas, que foram laminadas com reduções de 45%, 75% e 90% em espessura. A seguir, estas foram submetidas a tratamentos isotérmicos e isócronos com o objetivo de estudar a cinética de amolecimento das amostras deformadas a frio. As amostras superenvelhecidas e deformadas em 45% em redução de espessura, apresentaram somente indícios de início de recristalização (nas amostras tratadas a partir de 250°C por 1 hora) via EBSD, sendo que a maior parte do amolecimento pode ser explicada pelo mecanismo de recuperação. Além disso, a cinética de amolecimento das amostras recozidas nesse grupo apresentaram boa concordância com a lei logarítmica proposta por Kulhmann (1948) e (coincidentemente) também com o consolidado modelo JMAK. As amostras superenvelhecidas e deformadas em 75% e 90% apresentaram comportamento similar (isso é, principalmente recuperação) para recozimentos realizados em temperaturas de até 350°C por uma hora. Recozimentos realizados a 400°C promoveram a recristalização total das amostras desse grupo para tempos inferiores a 15 minutos. Dessa forma, não foi possível estudar a cinética de recristalização para esse segundo grupo de amostras. / This work presents a study about the softening after cold rolling and annealing of aluminium alloy AA 7075. Firstly, polarized light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrical conductivity and Vickers hardness have been used at the starting material (T6). The samples were then separated in two groups. The former underwent a solubilization heat treatment (485°C for 5 hours) whilst the latter underwent an overaging treatment to grow up the existing precipitates (300°C for 5 hours). Both groups of treated samples were again characterized by the techniques described above (except optical microscopy). In the rolling stage, the difficulty in straining the solubilized sample and the relative ease for doing so to the overaged sample was verified. It was therefore decided to conduct the study with the samples of the second group, which were 45%, 75% and 90% rolled in thickness reduction. Then, they underwent isothermal and isochronous treatments in order to study its softening kinetics by Vickers hardness measurements, polarized light optic microscopy and EBSD. The overaged and rolled samples (45% in thickness reduction) didn\'t present evidences of recrystallization except by very few grains found via EBSD (in samples treated from 250 ° C for 1 hour). So, most of the observed softening can be explained by recovery. In addition, the softening kinetics of the annealed samples in this group showed good agreement with the logarithmic law proposed by Kulhmann (1948) and (coincidentally) also with the consolidated JMAK model. The overaged samples that underwent thickness reduction of 75% and 90% showed a similar behavior (that is, mainly recovery) for annealing at temperatures up to 350 ° C. Annealing at 400 ° C promoted total recrystallization of the samples from this group (75% and 90% in thickness reduction) in less than 15 minutes. Thus, it was not possible to study the kinetics of recrystallization for this second group of samples.
10

Atmospheric Pitting Corrosion of AA7075-T6 Under Evaporating Droplets

Morton, Sean C. 27 August 2013 (has links)
No description available.

Page generated in 0.025 seconds