• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 86
  • 86
  • 86
  • 16
  • 16
  • 16
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Phylogeny, morphology and physiology of the secondary vascular system in fishes

Skov, Peter Vilhelm Unknown Date (has links)
Vascular casts of three chondrichthian, one dipnoan, one chondrostean and 14 teleostean species were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of interarterial anastomoses were lacking in the dipnoan (Sarcopterygii) and chondrichthyan species examined, suggesting that a SVS is restricted to actinopterygian fishes. The presence and distribution of a secondary vascular system does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species. Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel, Anguilla reinhardtii, were examined by light and transmission electron microscopy. Secondary vessels were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to re-anastomose with a secondary vessel running in parallel with the primary counterpart. Secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, surrounded by single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these were more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it was anticipated that flow through secondary vessels would to some extent be affected by an increase in primary vascular tone. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. Secondary vessels were followed to the surface of the animal through consecutive sections, where they eventually give rise to capillary beds overlying the scales. Secondary capillary beds were found to supply chloride cells in the skin, suggesting that this vascular system may be involved in cutaneous ionic exchange. Branchial vascular casts from two species of Tetraodontiformes showed that the vessels previously reported as nutrient vessels are with certainty part of the secondary vascular system. In the three-barred porcupine fish, Dicotylichthys punctulatus, interarterial anastomoses originated at high densities from efferent filamental and the efferent branchial arteries, from where they formed progressively larger secondary vessels. Small branches of this vascular system entered the filament body, where it gave rise to numerous side-vessels along the way. Large secondary vessels running in parallel with the efferent branchial arteries were found to constitute an additional arterio-arterial pathway, in that they exited the branchial basket in company with the afferent mandibular artery, the carotid artery and the efferent branchial arteries, from where they gave rise to vascular beds immediately after exit. The secondary vessels in this species were not found to supply the filament musculature; rather this vascular system was supplied by a single vessel derived from the efferent branchial artery, running in parallel with the afferent branchial artery. Secondary vessels were not found on any branchial component in the banded toadfish, Marylina pleurosticta, but in all other aspects the branchial vascular anatomy was similar to that of D. punctulatus. It is proposed that four independent vascular pathways may be present in the teleostean gill. The blood volume and flow rates of the primary (PVS) and secondary vascular system (SVS) were examined in the catadromous euryhaline teleost Lates calcarifer in order to determine whether any of these parameters were subject to change in individuals acclimated to seawater, compared to a group acclimated to freshwater. There was no significant difference in any measured parameter for the two groups. The volumes of the SVS were 0.67 „b 0.13 and 0.76 „b 0.13 mL 100g-1 body mass for FW and SW acclimated animals respectively. This constituted approximately one-third of the total blood volume in both groups. Turnover times for the SVS ranged from 21.0 to 25.2 minutes, demonstrating in accordance with previous publications, that this system is considerably more dynamic than previously assumed.
82

Phylogeny, morphology and physiology of the secondary vascular system in fishes

Skov, Peter Vilhelm Unknown Date (has links)
Vascular casts of three chondrichthian, one dipnoan, one chondrostean and 14 teleostean species were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of interarterial anastomoses were lacking in the dipnoan (Sarcopterygii) and chondrichthyan species examined, suggesting that a SVS is restricted to actinopterygian fishes. The presence and distribution of a secondary vascular system does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species. Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel, Anguilla reinhardtii, were examined by light and transmission electron microscopy. Secondary vessels were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to re-anastomose with a secondary vessel running in parallel with the primary counterpart. Secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, surrounded by single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these were more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it was anticipated that flow through secondary vessels would to some extent be affected by an increase in primary vascular tone. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. Secondary vessels were followed to the surface of the animal through consecutive sections, where they eventually give rise to capillary beds overlying the scales. Secondary capillary beds were found to supply chloride cells in the skin, suggesting that this vascular system may be involved in cutaneous ionic exchange. Branchial vascular casts from two species of Tetraodontiformes showed that the vessels previously reported as nutrient vessels are with certainty part of the secondary vascular system. In the three-barred porcupine fish, Dicotylichthys punctulatus, interarterial anastomoses originated at high densities from efferent filamental and the efferent branchial arteries, from where they formed progressively larger secondary vessels. Small branches of this vascular system entered the filament body, where it gave rise to numerous side-vessels along the way. Large secondary vessels running in parallel with the efferent branchial arteries were found to constitute an additional arterio-arterial pathway, in that they exited the branchial basket in company with the afferent mandibular artery, the carotid artery and the efferent branchial arteries, from where they gave rise to vascular beds immediately after exit. The secondary vessels in this species were not found to supply the filament musculature; rather this vascular system was supplied by a single vessel derived from the efferent branchial artery, running in parallel with the afferent branchial artery. Secondary vessels were not found on any branchial component in the banded toadfish, Marylina pleurosticta, but in all other aspects the branchial vascular anatomy was similar to that of D. punctulatus. It is proposed that four independent vascular pathways may be present in the teleostean gill. The blood volume and flow rates of the primary (PVS) and secondary vascular system (SVS) were examined in the catadromous euryhaline teleost Lates calcarifer in order to determine whether any of these parameters were subject to change in individuals acclimated to seawater, compared to a group acclimated to freshwater. There was no significant difference in any measured parameter for the two groups. The volumes of the SVS were 0.67 „b 0.13 and 0.76 „b 0.13 mL 100g-1 body mass for FW and SW acclimated animals respectively. This constituted approximately one-third of the total blood volume in both groups. Turnover times for the SVS ranged from 21.0 to 25.2 minutes, demonstrating in accordance with previous publications, that this system is considerably more dynamic than previously assumed.
83

Phylogeny, morphology and physiology of the secondary vascular system in fishes

Skov, Peter Vilhelm Unknown Date (has links)
Vascular casts of three chondrichthian, one dipnoan, one chondrostean and 14 teleostean species were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of interarterial anastomoses were lacking in the dipnoan (Sarcopterygii) and chondrichthyan species examined, suggesting that a SVS is restricted to actinopterygian fishes. The presence and distribution of a secondary vascular system does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species. Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel, Anguilla reinhardtii, were examined by light and transmission electron microscopy. Secondary vessels were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to re-anastomose with a secondary vessel running in parallel with the primary counterpart. Secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, surrounded by single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these were more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it was anticipated that flow through secondary vessels would to some extent be affected by an increase in primary vascular tone. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. Secondary vessels were followed to the surface of the animal through consecutive sections, where they eventually give rise to capillary beds overlying the scales. Secondary capillary beds were found to supply chloride cells in the skin, suggesting that this vascular system may be involved in cutaneous ionic exchange. Branchial vascular casts from two species of Tetraodontiformes showed that the vessels previously reported as nutrient vessels are with certainty part of the secondary vascular system. In the three-barred porcupine fish, Dicotylichthys punctulatus, interarterial anastomoses originated at high densities from efferent filamental and the efferent branchial arteries, from where they formed progressively larger secondary vessels. Small branches of this vascular system entered the filament body, where it gave rise to numerous side-vessels along the way. Large secondary vessels running in parallel with the efferent branchial arteries were found to constitute an additional arterio-arterial pathway, in that they exited the branchial basket in company with the afferent mandibular artery, the carotid artery and the efferent branchial arteries, from where they gave rise to vascular beds immediately after exit. The secondary vessels in this species were not found to supply the filament musculature; rather this vascular system was supplied by a single vessel derived from the efferent branchial artery, running in parallel with the afferent branchial artery. Secondary vessels were not found on any branchial component in the banded toadfish, Marylina pleurosticta, but in all other aspects the branchial vascular anatomy was similar to that of D. punctulatus. It is proposed that four independent vascular pathways may be present in the teleostean gill. The blood volume and flow rates of the primary (PVS) and secondary vascular system (SVS) were examined in the catadromous euryhaline teleost Lates calcarifer in order to determine whether any of these parameters were subject to change in individuals acclimated to seawater, compared to a group acclimated to freshwater. There was no significant difference in any measured parameter for the two groups. The volumes of the SVS were 0.67 „b 0.13 and 0.76 „b 0.13 mL 100g-1 body mass for FW and SW acclimated animals respectively. This constituted approximately one-third of the total blood volume in both groups. Turnover times for the SVS ranged from 21.0 to 25.2 minutes, demonstrating in accordance with previous publications, that this system is considerably more dynamic than previously assumed.
84

The Plasma Membrane Calcium-ATPase in Mammary Gland Epithelial Cell Lines and Consequences of its Inhibition in a Model of Breast Cancer

Lee, Won Jae Unknown Date (has links)
Ionized calcium (Ca2+), acting as an intracellular messenger, controls numerous biological processes that are essential for life. However, it is also able to convey signals that result in cell death. The fidelity of Ca2+ as a universal second messenger therefore depends on mechanisms that specifically and dynamically regulate its levels within a cell, as well as maintain resting intracellular Ca2+ concentration ([Ca2+]i) very low. One such mechanism for Ca2+ signaling and homeostasis is the plasma membrane Ca2+-ATPase (PMCA), which is a primary active Ca2+ transporter that translocates Ca2+ from a low intracellular Ca2+ environment to a high extracellular environment. There are four mammalian PMCA isoforms (PMCA1-4), which are differentially expressed depending on tissue or cell type. PMCA isoforms possess different sensitivities to biochemical regulation of Ca2+ efflux activity and are also able to subtly alter the dynamics of Ca2+ signals. These properties suggest that the PMCA is not merely a trivial mechanism for Ca2+ extrusion but is influential in contributing to the Ca2+ signaling requirements and unique physiology of different cells. The indispensable nature of Ca2+ signaling in organs such as the brain, heart and skeletal muscle has been the studied extensively but little is known about the roles and regulation of Ca2+ in the mammary gland. This is despite the fact that the mammary gland is a site of extensive Ca2+ flux during lactation. However, cumulating evidence indicates that upregulation of PMCA2 expression in the mammary gland is a major mechanism for milk Ca2+ enrichment. Therefore, the PMCA is likely to be an important mediator of bulk Ca2+ homeostasis in the mammary gland. Studies in other model systems also suggest that PMCAs may regulate other cellular processes such as cell proliferation, differentiation and apoptosis that are required for normal mammary gland physiology. These basic cellular processes are also disturbed in breast cancer and hence deregulation of PMCA expression in the mammary gland may have pathophysiological consequences. Previous studies show that PMCA1 expression is greater in tumorigenic MCF-7 and MDA-MB-231 human breast cancer cells compared to non-tumorigenic MCF-10A human breast epithelial cells. Furthermore, the expression of PMCA1b and PMCA4b is lower in human skin and lung fibroblasts neoplastically transformed by simian virus 40, compared to non-transformed counterparts. It is therefore hypothesized that regulation of PMCA isoform expression is disrupted in breast cancer and that inhibition of PMCA expression in an in vitro model of breast cancer has important effects in modulating intracellular Ca2+ homeostasis, cell proliferation, differentiation and apoptosis. This thesis describes the use of real time RT-PCR to compare PMCA isoform mRNA expression in tumorigenic and non-tumorigenic mammary gland epithelial cells. It demonstrates that particular breast cancer cell lines overexpress PMCA2, an isoform with restricted tissue distribution and which is present in abundant amounts in the lactating rat mammary gland. Thus, some breast cancers may be characterized by the overexpression of Ca2+ transporters that are normally upregulated during the physiological course of lactation. The pathophysiological significance of PMCA2 overexpression in breast cancer is uncertain and future investigations should look at whether levels of PMCA isoform expression correlate with malignancy, prognosis or survival. To address the second hypothesis of this thesis, a stable MCF-7 Tet-off human breast cancer cell line able to conditionally express PMCA antisense was generated. This strategy was necessary due to the current lack of specific pharmacological inhibitors of the PMCA. This thesis shows that PMCA antisense expression significantly inhibits PMCA protein expression, while subtly affecting PMCA-mediated Ca2+ efflux without causing cell death. However, it also reveals that inhibition of PMCA expression has major effects in mediating cell proliferation and cell cycle progression. Moderate changes in PMCA expression and PMCA-mediated Ca2+ transport result in dramatic consequences in MCF-7 cell proliferation. These studies not only support the supposition that modulation of Ca2+ signaling is a viable therapeutic approach for breast cancer but also suggest that PMCAs are possible drug targets. Alternatively, inhibitors of the PMCA may act as adjuvants to augment the efficacy of other anti-neoplastic agents like tamoxifen that have been shown to modulate Ca2+ signaling. Since the discovery of a new family of primary active Ca2+ transporters, which are related to PMCAs, the opportunities in this field of research are very promising.
85

The Ecology of Hendra virus and Australian bat lyssavirus

Field, Hume E. Unknown Date (has links)
Chapter one introduces the concept of disease emergence and factors associated with emergence. The role of wildlife as reservoirs of emerging diseases and specifically the history of bats as reservoirs of zoonotic diseases is previewed. Finally, the aims and structure of the thesis are outlined. In Chapter two, the literature relating to the emergence of Hendra virus, Nipah virus, and Australian bat lyssavirus, the biology of flying foxes, methodologies for investigating wildlife reservoirs of disease, and the modelling of disease in wildlife populations is reviewed. Chapter three describes the search for the origin of Hendra virus and investigations of the ecology of the virus. In a preliminary survey of wildlife, feral and pest species, 6/21 Pteropus alecto and 5/6 P. conspicillatus had neutralizing antibodies to Hendra virus. A subsequent survey found 548/1172 convenience-sampled flying foxes were seropositive. Analysis using logistic regression identified species, age, sample method, sample location and sample year, and the interaction terms age*species and age* sample method as significantly associated with HeV serostatus. Analysis of a subset of the data also identified a significant or near-significant association between time of year of sampling and HeV serostatus. In a retrospective survey, 16/68 flying fox sera collected between 1982 and 1984 were seropositive. Targeted surveillance of non-flying fox wildlife species found no evidence of Hendra virus. The findings indicate that flying foxes are a likely reservoir host of Hendra virus, and that the relationship between host and virus is mature. The transmission and maintenance of Hendra virus in a captive flying fox population is investigated in Chapter four. In study 1, neutralizing antibodies to HeV were found in 9/55 P. poliocephalus and 4/13 P. alecto. Titres ranged from 1:5 to 1:160, with a median of 1:10. In study 2, blood and throat and urogenital swabs from 17 flying foxes from study 1 were collected weekly for 14 weeks. Virus was isolated from the blood of a single aged non-pregnant female on one occasion. In study 3, a convenience sample of 19 seropositive and 35 seronegative flying foxes was serologically monitored monthly for all or part of a two-year period. Three individuals (all pups born during the study) seroconverted, and three individuals that were seropositive on entry became seronegative. Two of the latter were pups born during the study period. Dam serostatus and pup serostatus at second bleed were strongly associated when data from both years were combined (p<0.001; RR=9, 95%CI 1.42 to 57.12). The serial titres of 19 flying foxes monitored for 12 months or longer showed a rising and falling pattern (10), a static pattern (1) or a falling pattern (8). The findings suggest latency and vertical transmission are features of HeV infection in flying foxes. Chapter five describes Australian bat lyssavirus surveillance in flying foxes, insectivorous bats and archived museum bat specimens. In a survey of 1477 flying foxes, 69/1477 were antigen-positive (all opportunistic specimens) and 12/280 were antibody-positive. Species (p<0.001), age (p=0.02), sample method (p<0.001) and sample location (p<0.001) were significantly associated with fluorescent antibody status. There was also a significant association between rapid focus fluorescent inhibition test status and species (p=0.01), sample method (p=0.002) and sample location (p=0.002). There was a near-significant association (p=0.067) between time of year of sampling and fluorescent antibody status. When the analysis was repeated on P. scapulatus alone, the association stronger (p=0.054). A total of 1234 insectivorous bats were surveyed, with 5/1162 antigen–positive (all opportunistic specimens) and 10/390 antibody-positive. A total of 137 archived bats from 10 species were tested for evidence of Australian bat lyssavirus infection by immunohistochemistry (66) or rapid focus fluorescent inhibition test (71). None was positive by either test but 2 (both S. flaviventris) showed round basophilic structures consistent with Negri bodies on histological examination. The findings indicate that Australian bat lyssavirus infection is endemic in Australian bats, that submitted sick and injured bats (opportunistic specimens) pose an increased public health risk, and that Australian bat lyssavirus infection may have been present in Australian bats 15 years prior to its first description. In Chapter six, deterministic state-transition models are developed to examine the dynamics of HeV infection in a hypothetical flying fox population. Model 1 outputs demonstrated that the rate of transmission and the rate of recovery are the key parameters determining the rate of spread of infection, and that population size is positively associated with outbreak size and duration. The Model 2 outputs indicated that that long-term maintenance of infection is inconsistent with lifelong immunity following infection and recovery. Chapter seven discusses alternative hypotheses on the emergence and maintenance of Hendra virus and Australian bat lyssavirus in Australia. The preferred hypothesis is that both Hendra virus and Australian bat lyssavirus are primarily maintained in P. scapulatus populations, and that change in the population dynamics of this species due to ecological changes has precipitated emergence. Future research recommendations include further observational, experimental and/or modeling studies to establish or clarify the route of HeV excretion and the mode of transmission in flying foxes, the roles of vertical transmission and latency in the transmission and maintenance of Hendra virus in flying foxes, and the dynamics of Hendra virus infection in flying foxes.
86

The Ecology of Hendra virus and Australian bat lyssavirus

Field, Hume E. Unknown Date (has links)
Chapter one introduces the concept of disease emergence and factors associated with emergence. The role of wildlife as reservoirs of emerging diseases and specifically the history of bats as reservoirs of zoonotic diseases is previewed. Finally, the aims and structure of the thesis are outlined. In Chapter two, the literature relating to the emergence of Hendra virus, Nipah virus, and Australian bat lyssavirus, the biology of flying foxes, methodologies for investigating wildlife reservoirs of disease, and the modelling of disease in wildlife populations is reviewed. Chapter three describes the search for the origin of Hendra virus and investigations of the ecology of the virus. In a preliminary survey of wildlife, feral and pest species, 6/21 Pteropus alecto and 5/6 P. conspicillatus had neutralizing antibodies to Hendra virus. A subsequent survey found 548/1172 convenience-sampled flying foxes were seropositive. Analysis using logistic regression identified species, age, sample method, sample location and sample year, and the interaction terms age*species and age* sample method as significantly associated with HeV serostatus. Analysis of a subset of the data also identified a significant or near-significant association between time of year of sampling and HeV serostatus. In a retrospective survey, 16/68 flying fox sera collected between 1982 and 1984 were seropositive. Targeted surveillance of non-flying fox wildlife species found no evidence of Hendra virus. The findings indicate that flying foxes are a likely reservoir host of Hendra virus, and that the relationship between host and virus is mature. The transmission and maintenance of Hendra virus in a captive flying fox population is investigated in Chapter four. In study 1, neutralizing antibodies to HeV were found in 9/55 P. poliocephalus and 4/13 P. alecto. Titres ranged from 1:5 to 1:160, with a median of 1:10. In study 2, blood and throat and urogenital swabs from 17 flying foxes from study 1 were collected weekly for 14 weeks. Virus was isolated from the blood of a single aged non-pregnant female on one occasion. In study 3, a convenience sample of 19 seropositive and 35 seronegative flying foxes was serologically monitored monthly for all or part of a two-year period. Three individuals (all pups born during the study) seroconverted, and three individuals that were seropositive on entry became seronegative. Two of the latter were pups born during the study period. Dam serostatus and pup serostatus at second bleed were strongly associated when data from both years were combined (p<0.001; RR=9, 95%CI 1.42 to 57.12). The serial titres of 19 flying foxes monitored for 12 months or longer showed a rising and falling pattern (10), a static pattern (1) or a falling pattern (8). The findings suggest latency and vertical transmission are features of HeV infection in flying foxes. Chapter five describes Australian bat lyssavirus surveillance in flying foxes, insectivorous bats and archived museum bat specimens. In a survey of 1477 flying foxes, 69/1477 were antigen-positive (all opportunistic specimens) and 12/280 were antibody-positive. Species (p<0.001), age (p=0.02), sample method (p<0.001) and sample location (p<0.001) were significantly associated with fluorescent antibody status. There was also a significant association between rapid focus fluorescent inhibition test status and species (p=0.01), sample method (p=0.002) and sample location (p=0.002). There was a near-significant association (p=0.067) between time of year of sampling and fluorescent antibody status. When the analysis was repeated on P. scapulatus alone, the association stronger (p=0.054). A total of 1234 insectivorous bats were surveyed, with 5/1162 antigen–positive (all opportunistic specimens) and 10/390 antibody-positive. A total of 137 archived bats from 10 species were tested for evidence of Australian bat lyssavirus infection by immunohistochemistry (66) or rapid focus fluorescent inhibition test (71). None was positive by either test but 2 (both S. flaviventris) showed round basophilic structures consistent with Negri bodies on histological examination. The findings indicate that Australian bat lyssavirus infection is endemic in Australian bats, that submitted sick and injured bats (opportunistic specimens) pose an increased public health risk, and that Australian bat lyssavirus infection may have been present in Australian bats 15 years prior to its first description. In Chapter six, deterministic state-transition models are developed to examine the dynamics of HeV infection in a hypothetical flying fox population. Model 1 outputs demonstrated that the rate of transmission and the rate of recovery are the key parameters determining the rate of spread of infection, and that population size is positively associated with outbreak size and duration. The Model 2 outputs indicated that that long-term maintenance of infection is inconsistent with lifelong immunity following infection and recovery. Chapter seven discusses alternative hypotheses on the emergence and maintenance of Hendra virus and Australian bat lyssavirus in Australia. The preferred hypothesis is that both Hendra virus and Australian bat lyssavirus are primarily maintained in P. scapulatus populations, and that change in the population dynamics of this species due to ecological changes has precipitated emergence. Future research recommendations include further observational, experimental and/or modeling studies to establish or clarify the route of HeV excretion and the mode of transmission in flying foxes, the roles of vertical transmission and latency in the transmission and maintenance of Hendra virus in flying foxes, and the dynamics of Hendra virus infection in flying foxes.

Page generated in 0.0991 seconds