• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 822
  • 294
  • 117
  • 84
  • 39
  • 26
  • 23
  • 20
  • 18
  • 11
  • 9
  • 8
  • 6
  • 5
  • 1
  • Tagged with
  • 1710
  • 280
  • 196
  • 160
  • 155
  • 131
  • 126
  • 120
  • 119
  • 99
  • 95
  • 94
  • 92
  • 86
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Second-harmonic confocal microscopy of single ß-BBO nanocrystals

SANTOS, Rodrigo Galvão dos 31 July 2017 (has links)
SANTOS, Rodrigo Galvão dos, também é conhecido em citações bibliográficas por: GALVÃO, Rodrigo dos Santos / Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-08-31T21:21:44Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Rodrigo Galvão dos Santos.pdf: 6512201 bytes, checksum: 3432f9c76554ca0ad73a3e217eaf70ef (MD5) / Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-09-17T20:59:17Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Rodrigo Galvão dos Santos.pdf: 6512201 bytes, checksum: 3432f9c76554ca0ad73a3e217eaf70ef (MD5) / Made available in DSpace on 2018-09-17T20:59:17Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Rodrigo Galvão dos Santos.pdf: 6512201 bytes, checksum: 3432f9c76554ca0ad73a3e217eaf70ef (MD5) Previous issue date: 2017-07-31 / CNPq / In this M. Sc. thesis, we apply the Confocal Microscopy (CM) technique for optical characterization of single β–barium-borate (BBO) nanocrystals (NCs). CM can produce images by reflection and fluorescence with high signal-to-noise ratio. Our experimental setup allows the measurement of the SH polarization response to be recorded and the results can be used to determine the NCs orientation as well as to obtain information about the NL susceptibility tensor, allowing a detailed characterization of the sample. Home-synthesized BBO NCs were previously characterized by several techniques such as X-ray diffraction (XRD), High-Resolution Transmission Electronic Microscopy (HRTEM), Selected Area Electron Diffraction (SAED) and Diffuse Reflectance (DR), assuring that non-centrosymmetric and single crystalline phase have been synthesized. The NCs have average dimensions of 150 nm×15 nm×15 nm, and these needles are oriented in the direction of the crystallographic c-axis. On the other hand, the HRTEM and SAED showed the presence of defects in the needles composed of crystallites about 10 nm in size that are formed during the growth by the rotation of crystallographic planes around the c-axis. Due to symmetry properties of BBO, the technique employed in this work cannot discern rotations along the c-axis and thus, the defects are effectively irrelevant to SH CM as well to polarization dependent measurements. The experimental setup uses a mode-locked Ti:Sapphire laser (120 fs, 76 MHz, 820 nm) as a light source for a home-made inverted optical confocal microscope employing a 100X NA=1.25 objective, set under a piezo module for scanning the sample in relation to the laser focal region. A dichroic mirror serves as a beam splitter, ensuring the incidence of the laser on the sample and the transmission of the SH signal. The confocal aspect is obtained by using a 10 μm pinhole in the detection path. Spectral information is obtained with a monochromator equipped with a photomultiplier. A half-wave plate placed right before the dichroic mirror allows measurements of the SH signal as a function of the laser polarization orientation. Several images of single NCs were made by raster scanning of the sample in 2 and 3 dimensions, showing a good agreement with the corresponding imaging theory. The polarization dependence of the SH signal allowed the identification of individual particles from aggregates and the data was fitted using a model that takes into account the BBO symmetries and the optical elements in the setup. The model considers: i) the electrostatic approximation; ii) the effects of the microscope’s objective used to focus the light on the sample in epi-geometry configuration and iii) the properties of χ⁽²⁾ for the β–BBO NCs. The results constitute a proof of concept for high resolution CM of single NL emitters as well an optical characterization for BBO NCs not hitherto described in the literature. / Nesta dissertação de mestrado, nos aplicamos a técnica de Microscopia Confocal (MC) para caracterização óptica de nanocristais (NCs) individuais de Beta-Borato de bário (BBO). A MC e capaz de produzir imagens por reflexão e fluorescência com elevada relação sinal-ruído. Nosso aparato experimental permite que a medida da resposta de polarização seja registrada e que os resultados sejam usados para determinar a orientação dos NCs bem como obter informações sobre o tensor de susceptibilidade NL, permitindo uma caracterização detalhada da amostra. NCs de BBO de síntese própria foram previamente caracterizados por diversas técnicas como difração de raio-X (DRX), microscopia eletrônica de transmissão de alta resolução (METAR), difração de elétrons de área selecionada (DEAS) e refletância difusa (RD), garantindo que foi obtida uma fase cristalina unica e nao centrossimétrica. Os NCs tem um tamanho médio de 150 nm×15 nm×15 nm e essas agulhas são orientadas na direção do eixo cristalográfico c. Por outro lado, a METAR e a DEAS mostraram a presença de defeitos nas agulhas compostos por cristalitos de cerca de 10 nm de diâmetro que são formados durante o crescimento pela rotação dos planos cristalográficos em torno do eixo c. Devido a propriedades simétricas do BBO, a técnica empregada neste trabalho não é capaz de distinguir tais rotações, logo, os defeitos são efetivamente invisíveis a MC assim como as medidas de polarização. O arranjo experimental usa um laser de Ti:Sa (120 fs, 76 MHz, 820 nm) como a fonte luminosa para um microscópio confocal invertido manufaturado, que emprega uma objetiva posicionada num modulo piezo para varredura da amostra com relação a posição focal do laser. Um espelho dicroico atua como um divisor de feixe, garantindo a incidência do laser na amostra e a transmissão do sinal de SH. O aspecto confocal e obtido usando um pinhole de 10 μm no caminho de deteccao. Informacao espectral e obtida com um monocromador equipado com uma fotomultiplicadora. Uma placa de meia onda colocada antes do espelho dicroico permite medidas do sinal de SH como função da orientação de polarização do laser. Diversas imagens de NCs individuais foram feitas por raster scan da amostra em 2 e 3 dimensões, mostrando uma boa concordância com a teoria de formação de imagens correspondente. A dependência de polarização do sinal de SH permitiu a distinção entre partículas individuais e agregados e os dados foram ajustados com um modelo que leva em consideração as simetrias do BBO e os elementos ópticos do setup. O modelo considera: i) a aproximação eletrostática; ii) os efeitos da objetiva de microscópio usada para focalizar a luz na amostra em configuração de reflexão e iii) as propriedades de χ⁽²⁾ para os NCs de β–BBO. Os resultados constituem uma prova de conceito para MC de alta resolução de emissores individuais NL bem como uma caracterização óptica de NCs de BBO ate então não descrita na literatura.
72

Estabilidade térmica da coercividade e viscosidade magnética no nano compósito FeCo/MnO

Rodrigues Sampaio de Araújo, Lincoln January 2005 (has links)
Made available in DSpace on 2014-06-12T18:07:22Z (GMT). No. of bitstreams: 2 arquivo7878_1.pdf: 5740742 bytes, checksum: 6e433fd27be794c9481bfa0d006a8274 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2005 / Nano estruturas magnéticas têm despertado bastante interesse recentemente devido µas propriedades diferenciadas em relação aos sistemas massivos. O sistema nanocomposito Fe40Co60=MnO produzido por mecano -síntese, e tratado termicamente (400oC) por diferentes tempos, foi o sistema investigado nesta dissertacção. Observou-se recentemente neste sistema o aumento da coercividade com a diminuição da temperatura e o surgimento do efeito de exchange-bias para T < ¡153oC(120K), a temperatura de Neel da fase MnO. Este efeito foi atribuído ao acoplamento Ferromagnetico-Antiferromagnetico existente entre grãos nanometricos vizinhos de FeCo e MnO. A motivação para a continuidade no estudo magnético deste sistema foi a alta estabil- idade térmica da coercividade, apresentada no intervalo em temperatura desde ¡153oC até a temperatura ambiente. A primeira parte do nosso trabalho de mestrado foi voltada para a investigação da coercividade neste sistema no regime de altas temperaturas. Nas amostras investigadas, a coercividade manteve-se aparentemente constante desde Tamb até cerca de 700oC. Na segunda parte do trabalho, foram realizados estudos de viscosidade magnética µa temperatura ambiente em 5 amostras de FeCo/MnO com tratamentos térmicos prévios que variavam desde 0h ate 3h. Os volumes de ativção, como função dos campos reversos aplicados, foram determinados através da expressão Va = kBT=SvMS, onde Sv = S=Âirr é o parâmetro de viscosidade magnética envolvido nos processos de revers~ao e MS é a magnetização de saturação da fase ferromagnético. A comparação entre os V 0 as obtidos por viscosidade magnética e por difração de raios-X (Fórmula de Scherrer) mostrou-se satisfatória dentro dos erros experimentais
73

Consolidated nanomaterials synthesized using nickel micro-wires and carbon nanotubes

Davids, Wafeeq January 2007 (has links)
Magister Scientiae - MSc / Nano-devices are the next step in the application of nanomaterials in modern technology. One area of research that is receiving an increased amount of attention globally is the fabrication of new nano-devices for applications in hydrogen energy technologies. The current work focuses on the synthesis and characterization of nano-devices with potential application in alkaline electrolysis and secondary polymer lithium ion batteries. Previous work with Nickel micro-wires demonstrated the potential to use these nanomaterials as electrodes in alkaline electrolysis. Carbon nanotubes have been shown to posse excellent electrochemical properties. A new direction in research is explored by combining nickel micro-wires with CNT, a new consolidated composite carbon nanocomposite can be realized and the characterization of such a novel composite was the focus of this thesis. Novel composite carbon nanomaterials were synthesized using an electrochemical template technique and a hydrocarbon pyrolysis step. The first step involved the deposition of nickel within the pores of ion track etched Polyethylene terephthalate (PET) membrane; with pore diameters of 1μ, 0.4μ and 0.2 μ. Electrochemical deposition of nickel was carried out galvanostatically in a nickel hard bath between 35-40°C, and using a deposition current density of 75 mAcm2. Carbon nanotubes were then deposited directly onto the surface of the nickel micro-wires via a chemical vapour deposition (CVD) technique using liquid petroleum gas (LPG) as the carbon source. CVD was done at a temperature of 800°C and the deposition time was 5 minutes. The morphology and structural studies of these novel composite nanomaterials were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical investigations were done using Cyclic Voltammetry (CV), Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy (EIS). After removal of the template, before CNT CVD growth, SEM images revealed free standing arrays of nickel micro-wires, and after CNT growth via CVD the SEM micrographs showed that the morphology of the Ni micro-wires was moderately altered by the CVD process. From the XRD results it was shown that the crystallinity of the Nimicro-wires was persevered after the CVD process. The XRD of the nickel micro-wires with CNT grown directly on the surface revealed the characteristic CNT peak at 2θ =24.60. Cyclic Voltammetry (CV) was performed on the consolidated composite nanomaterial in an alkaline solution. The CV revealed that the novel composite carbon nanomaterial was the most active for hydrogen evolution when compared to unmodified Ni micro-wires and a flat nickel electrode. This was attributed to the increase in electrochemical accessible surface area. Electrochemical impedance spectroscopy (EIS) showed that the novel composite carbon nanomaterial had a much higher capacitance than the nickel micro-wires, a flat nickel electrode, a flat nickel substrate modified with CNT, and a graphite electrode. When a similar comparison was done using a commercially available anode for lithium ion battery applications, the novel consolidated composite carbon nanomaterial had double the capacitance of the commercial anode. The consolidated composite carbon nanomaterial was modified by depositing Pt on to the surface of the CNT via electroless deposition. The presence of Pt was determined by Energy dispersive spectrometry and the electrocatalytic activity of the Pt modified consolidated composite carbon nanomaterial was significantly improved. The work presented in this thesis provides a new and unique direction in the synthesis and application of novel consolidated carbon nanomaterials through true synergistic effect between nickel micro-wires and CNT. The exploration of the characteristics of the system and the ability to functionalize the CNT with different moieties allows for a wide range of application in energy conversion devices. / South Africa
74

A proteomic approach to profiling the pipping muscle of the broiler embryo

Sokale, Adebayo Oluwaseun 30 April 2011 (has links)
The Musculus complexus (pipping muscle) plays a primary role in the hatching of the chick from the eggshell at the end of its embryonic life. Various metabolic and cellular changes have been associated with the pipping muscle during development. These studies profiled the pipping muscle at the molecular level by identifying proteins which are associated with the developmental changes. In the first phase of the study, protein expression profile of the Day 13 chicken embryo pipping muscle was obtained using DDF with nano HPLC mass spectrometric analyzer. Identified proteins were categorized based on Gene Ontology. In the second phase, pipping muscle lymph was profiled from Day 20 chicken embryo using PCT with LTQ-Orbitrap mass spectrometric analyzer. The identification of constituent proteins of the piping muscle provides a better understanding of the complex cellular processes and functionality of the pipping muscle with potential benefits for improving hatchability in the poultry industry.
75

Quantification of energy conversion efficiency of a micromotor system and its applications / マイクロモーターシステムのエネルギー変換効率の定量化とその応用 / マイクロモーター システム ノ エネルギー ヘンカン コウリツ ノ テイリョウカ ト ソノ オウヨウ

張 文煜, Wenyu Zhang 18 September 2021 (has links)
博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
76

Nanotechnology and its Medical Applications: Focused on Biosensors and Neuro-regeneration

Scacca, Caroline C. 23 April 2009 (has links)
No description available.
77

Surface Polymerization, Interface Structure, and Low Temperature Consolidation of Nano Ceramic Particles

Yu, Zhou January 2000 (has links)
No description available.
78

Computational and Experimental Nano Mechanics

Alipour Skandani, Amir 04 September 2014 (has links)
The many advances of nano technology extensively revolutionize mechanics. A tremendous need is growing to further bridge the gap between the classical mechanics and the nano scale for many applications at different engineering fields. For instance, the themes of interdisciplinary and multidisciplinary topics are getting more and more attention especially when the coherency is needed in diagnosing and treating terminal diseases or overcoming environmental threats. The fact that how mechanical, biomedical and electrical engineering can contribute to diagnosing and treating a tumor per se is both interesting and unveiling the necessity of further investments in these fields. This dissertation presents three different investigations in the area of nano mechanics and nano materials spanning from computational bioengineering to making mechanically more versatile composites. The first part of this dissertation presents a numerical approach to study the effects of the carbon nano tubes (CNTs) on the human body in general and their absorbability into the lipid cell membranes in particular. Single wall carbon nano tubes (SWCNTs) are the elaborate examples of nano materials that departed from mere mechanical applications to the biomedical applications such as drug delivery vehicles. Recently, experimental biology provided detailed insights of the SWCNTs interaction with live organs. However, due to the instrumental and technical limitations, there are still numerous concerns yet to be addressed. In such situation, utilizing numerical simulation is a viable alternative to the experimental practices. From this perspective, this dissertation reports a molecular dynamics (MD) study to provide better insights on the effect of the carbon nano tubes chiralities and aspect ratios on their interaction with a lipid bilayer membrane as well as their reciprocal effects with surface functionalizing. Single walled carbon nano tubes can be utilized to diffuse selectively on the targeted cell via surface functionalizing. Many experimental attempts have smeared polyethylene glycol (PEG) as a biocompatible surfactant to carbon nano tubes. The simulation results indicated that SWCNTs have different time-evolving mechanisms to internalize within the lipid membrane. These mechanisms comprise both penetration and endocytosis. Also, this study revealed effects of length and chirality and surface functionalizing on the penetrability of different nano tubes. The second part of the dissertation introduces a novel in situ method for qualitative and quantitative measurements of the negative stiffness of a single crystal utilizing nano mechanical characterization; nano indentation. The concept of negative stiffness was first introduced by metastable structures and later by materials with negative stiffness when embedded in a stiffer (positive stiffness) matrix. However, this is the first time a direct quantitative method is developed to measure the exact value of the negative stiffness for triglycine sulfate (TGS) crystals. With the advancements in the precise measuring devices and sensors, instrumented nano indentation became a reliable tool for measuring submicron properties of variety of materials ranging from single phase humongous materials to nano composites with heterogeneous microstructures. The developed approach in this chapter of the dissertation outlines how some modifications of the standard nano indentation tests can be utilized to measure the negative stiffness of a ferroelectric material at its Curie temperature. Finally, the last two chapters outline the possible improvements in the mechanical properties of conventional carbon fiber composites by introducing 1D nano fillers to them. Particularly, their viscoelastic and viscoplastic behavior are studied extensively and different modeling techniques are utilized. Conventional structural materials are being replaced with the fiber-reinforced plastics (FRPs) in many different applications such as civil structures or aerospace and car industries. This is mainly due to their high strength to weight ratio and relatively easy fabrication methods. However, these composites did not reach their full potential due to durability limitations. The majorities of these limitations stem from the polymeric matrix or the interface between the matrix and fibers where poor adhesion fails to carry the desired mechanical loadings. Among such failures are the time-induced deformations or delayed failures that can cause fatal disasters if not taken care of properly. Many methodologies are offered so far to improve the FRPs' resistance to this category of time-induced deformations and delayed failures. Several researchers tried to modify the chemical formulation of polymers coming up with stiffer and less viscous matrices. Others tried to modify the adhesion of the fibers to the matrix by adding different chemically functional groups onto the fibers' surface. A third approach tried to modify the fiber to matrix adhesion and at the same time improve the viscous properties of the matrix itself. This can be achieved by growing 1D nano fillers on the fibers so that one side is bonded to the fiber and the other side embedded in the matrix enhancing the matrix with less viscous deformability. It is shown that resistance to creep deformation and stress relaxation of laminated composites improved considerably in the presence of the nano fillers such as multiwall carbon nano tubes (MWCNTs) and zinc oxide nano wires (ZnO- NWs). The constitutive behaviors of these hybrid composites were investigated further through the use of the time temperatures superposition (TTS) principle for the linear viscoelastic behavior and utilizing phenomenological models for the viscoplastic behavior. / Ph. D.
79

Preparation and Electrochemical Testing of Flexible Carbon Nanofiber Electrodes from Electrospinning

Beach, Jeremy 04 December 2017 (has links)
The purpose of this research project was to determine the processing conditions necessary for preparing flexible carbon nanofiber electrodes by electrospinning and to explore various applications for those electrodes. It was found that by varying only the relative humidity while electrospinning a poly(acrylonitrile) precursor, fragile or flexible freestanding carbon nanofiber electrodes were prepared. The relative humidity during electrospinning controlled the fiber diameter, the bulk porosity of the material, and flexibility of the final carbon electrode. Higher porosity mats electrospun in a high relative humidity environment prevented fiber sintering, which if not minimized, resulted in non-flexible carbon electrodes. Both flexible and fragile electrodes were freestanding, binderless, and collectorless. Additionally, they required no further processing before use and were 100 wt.% active material. When cycled galvanostatically as a lithium ion battery anode, the flexible electrode exhibited a specific capacity of 379 mAH g-1 at the 100th cycle and capacity retention was 97.4% relative to the fifth cycle. When applied as an active material support electrode for lithium ion battery cathodes, the carbon support was successfully utilized with both micron and nano structured active material and cycled for 100 cycles with limited capacity loss. The same electrodes were also found to be a viable replacement for Pt electrode based actuators/artificial muscles. However, this application requires much further research to understand better the required processing and effects of the physical properties of the electrode on actuator performance. In addition to this, the flexible electrodes have a wide variety of other potential applications including, electrochemical storage and conversion devices, chemical sensing, and filtration. The focus of this work was electrochemical storage and conversion devices in the form of lithium ion battery anodes and cathodes as well as ionic polymer composite actuators. / PHD / In this research, the processing conditions required to prepare flexible carbon nanofiber electrodes by electrospinning was determined. These carbon electrodes were then applied as the anode for lithium ion battery applications, as a support material for the cathode active material for lithium ion battery applications and as an electrode for electrically stimulated actuators, also known as artificial muscles. In addition to these applications, the carbon nanofibers developed here have potential uses for fuel cells, chemical sensors, and filtration. The method used to develop these electrodes was electrospinning, an industrially scalable manufacturing technique that produces nanofibers with diameters ranging from 100 nm to a few microns in diameter. To produce the flexible carbon nanofibers, it was found the precise control of all electrospinning variables had to be maintained. Specifically, the relative humidity of the electrospinning environment was found to be the most crucial. When the electrode was applied as a lithium ion battery anode, it was used without additional processing which made it 100 wt.% active material. When the performance of the battery was tested, a specific capacity, or the energy stored, was found to be 379 mAH/g on the 100th cycle. Relative to the 5th cycle, after the electrode had stabilized, this was a capacity retention of 97.4%. In addition to its successful use as an anode, the carbon nanofiber electrode was also applied as a support material for a flexible lithium ion battery cathode. For this application, two cathode types were examined, micron and nanostructured. Both were prepared by vacuum filtering a dispersion of the active material through the carbon nanofiber electrode support material. Both the micron and nano structured active material were successfully cycled for 100 cycles with limited capacity loss using this novel cathode support material. The same electrodes were also found to be a viable replacement for Pt electrode based actuators/artificial muscles. However, this application requires much further research to understand better the required processing and effects of the physical properties of the electrode on actuator performance.
80

Une biocapteur à base de résonance de plasmons de surface intégré monolithiquement avec une source d'excitation

Jimenez, Alvaro January 2015 (has links)
Le champ biomédical n’a pas échappé à l’évolution de la technologie, elle cherche aussi à intégrer plusieurs fonctions dans un espace restreint. Un des points forts du développement est la massification de points de service, afin d'obtenir un diagnostic rapide des maladies. Le diagnostique aux premières étapes de son évolution permettra réduire considérablement les coûts associés aux traitements des patients. Le présent document exprimera une alternative à l'évolution de la technologie des biocapteurs qui sont basés sur le phénomène optique appelé résonance par plasmons de surface. Ce projet de recherche vise l’étude de l’intégration monolithique des deux tiers des composants principaux qui conforment normalement à ce type de biocapteurs optiques. Tandis que d'autres projets de recherche ont centré leurs travaux sur l’intégration de la surface de réaction et le détecteur, notre travail a pris en compte l’intégration de la source de lumière et la surface de réaction biologique. Deux types de sources ont été employés au moment de faire la conception, l’étude de matériaux, la fabrication et la caractérisation de la performance de notre dispositif. La première source a employé des puits quantiques à l’intérieur d’une gaufre de GaAs qui nécessitait un pompage optique pour son fonctionnement. La deuxième source a eu une gaufre commerciale employée pour la fabrication des diodes d’émission lumineuse verticale, qui a dû être excitée par un courant électrique. On a découvert que les deux types de sources sont complémentaires. La source avec des puits quantiques a démontré une amélioration de la performance en comparaison à notre système commercial de référence. La deuxième source a démontré la faisabilité d’intégration monolithique en permettant se rapprocher à la fabrication d’un prototype commercial. La porte reste donc ouverte pour la poursuite du développement de cette technologie en cherchant un nouveau système employant ces deux sources, mais usant de meilleures caractéristiques.

Page generated in 0.0443 seconds