51 |
Pool boiling on nano-finned surfacesSriraman, Sharan Ram 10 October 2008 (has links)
The effect of nano-structured surfaces on pool boiling heat transfer is explored in this
study. Experiments are conducted in a cubical test chamber containing fluoroinert
coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments
are conducted for saturation and subcooled conditions. Three different types of ordered
nano-structured surfaces are fabricated using Step and flash imprint lithography on
silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching
(DRIE). These nano-structures consist of a square array of cylindrical nanofins with a
longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights
ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water
on the substrates is measured before and after the boiling experiments. The contact-angle
is observed to increase with the height of the nano-fins. Contact angle variation is also
observed before and after the pool boiling experiments.
The pool boiling curves for the nano-structured silicon surfaces are compared with that
of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed
to estimate the heat flux through the projected area (plan area) for the nano-patterned
zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin
surfaces compared to bare (smooth) surfaces, under saturation condition. The pool
boiling heat flux data for the three nano-structured surfaces progressively overlap with
each other in the vicinity of the MHF condition. Based on the experimental data several
micro/nano-scale transport mechanisms responsible for heat flux enhancements are
identified, which include: "microlayer" disruption or enhancement, enhancement of
active nucleation site density, enlargement of cold spots and enhancement of contact
angle which affects the vapor bubble departure frequency.
|
52 |
SYNTHESIS AND CHARACTERIZATION OF NANO-DIAMOND REINFORCED CHITOSAN FOR TISSUE ENGINEERING2015 August 1900 (has links)
In recent years, tissue engineering has shown great potential in treatment of injured tissues which aims to create artificial structures for cells to regenerate new tissues for replacing the damaged and diseased ones. The selection of scaffold materials is one of the critical factors affecting tissue healing process. Among a wide range of scaffold materials, chitosan (CS) has been demonstrated as an ideal material due to its biocompatibility, nontoxicity, biodegradability, antibacterial activity and favorable strength and stiffness. However, its insufficient mechanical properties limits its feasibility and scope for clinical application, especially for bone scaffolds. The main purpose of the study is to explore the potential of incorporation of nanofillers into CS to enhance the mechanical properties for tissue engineering. In this work, nanodiamond (ND) is applied and studied due to its high surface to volume ratio, rich surface chemistry, high mechanical strength, and excellent biocompatibility.
ND/CS nanocomposites with different diamond concentration from 1wt. % to 5wt. % were synthetized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and nanoindentation.
Compared with pristine CS, the addition of ND resulted in a dramatic improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young’s modulus and 68%, 96%, 114%, 118%, and 127% increase in hardness when ND amount is 1wt. %, 2wt. %, 3wt. %, 4wt. %, and 5wt. %, respectively. The strong interaction between ND surface groups and chitosan matrix is of great importance in changing polymer structure and improving mechanical properties. The cell viability and cytotoxicity of the nanocomposite were also studied using MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. The results show that the addition of ND has no negative effect on cell viability and the nanocomposites have no cytotoxicity.
|
53 |
Micro et nano-patterning de polymères conducteurs pour des applications biomédicales / Micro- and nano-patterning of conducting polymers for biomedical applicationsElmahmoudy, Mohammed 16 October 2017 (has links)
La bioélectronique utilise des signaux électriques pour interagir avec des systèmes biologiques. Les capteurs qui permettent la lecture électrique de marqueurs de maladies importantes et les implants/stimulateurs utilisés pour la détection et le traitement d'activité cellulaire pathologique ne sont que quelques exemples de ce que cette technologie peut offrir. Du fait de leurs propriétés électro-actives et mécaniques fascinantes, l'électronique organique ou les matériaux conjugués π ont été largement exploités dans le domaine de la bioélectronique. Le mélange intéressant entre conductivité électronique et ionique de ces polymères conducteurs permet le couplage entre les charges électroniques présentent dans le volume des films organiques avec les flux ioniques du milieu biologique. Le matériau prototypique de la bioélectronique organique est le polymère conducteur poly(3,4-éthylènedioxythiophène) (PEDOT) dopé avec du polystyrène sulfonate (PSS). Dans ce rapport, nous étudierons une approche pour moduler les propriétés mécaniques, électriques et électrochimiques du PEDOT: PSS et étudier leur impact sur la performance des transistors électrochimiques organiques. Par ailleurs, nous évaluerons l'effet de la micro-structuration et du nano-patterning sur l'impédance électrochimique des électrodes en or recouvertes de PEDOT: PSS utiles pour de futurs enregistrements et stimulations neurales. Enfin, nous démontrerons l'utilisation du PEDOT:PSS à micro-motifs pour l'adhésion et la migration de cellules. / Bioelectronics uses electrical signals to interact with biological systems. Sensors that allow for electrical read-out of important disease markers, and implants/stimulators used for the detection and treatment of pathological cellular activity are only a few examples of what this technology can offer. Due to their intriguing electroactive and mechanical properties, organic electronics or π-conjugated materials have been extensively explored regarding their use in bioelectronics applications. The attractive mixed electronic/ionic conductivity feature of conducting polymers enables coupling between the electronic charges in the bulk of the organic films with ion fluxes in biological medium. The prototypical material of organic bioelectronics is the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS). PEDOT:PSS is commercially available, water-dispersible conjugated polymer complex that can be cast into films of high hole and cation conductivity, good charge storage capacity, biocompatibility, and chemical stability. In the present work we investigate an approach to tailor the mechanical, electrical, and electrochemical properties of PEDOT:PSS and study their impact on the performance of organic electrochemical transistors. In addition, we study the effect of micro-structuring and nano-patterning on the electrochemical impedance of PEDOT:PSS- coated gold electrodes for future neural recordings and stimulation. Moreover we demonstrate the use of micro-patterned PEDOT:PSS in cell adhesion and migration.
|
54 |
Preparação e caracterização de nanopartículas magnéticas de Sm-Co, Nd-Fe-B, Fe-Pt e Co-Pt pelo método de agregação gasosa / Production and characterization of nanoparticles of high magnetic anisotropy of Sm-Co, Nd-Fe-B, Fe-Pt e Co-Pt using the gas aggregation methodValquiria Fernanda Gonçalves de Lima 31 October 2013 (has links)
Atualmente, nanopartículas (NPs) são utilizadas em todos os ramos da tecnologia. Suas promissoras aplicações envolvem entre outros, o campo dos sensores e transdutores, mídia de gravação magnética, carreadores magnéticos de drogas medicinais. Com o objetivo de produzir NPs pelo método físico, um gerador de nanopartículas foi adaptado usando um dos canhões do sistema de magnetron sputtering, baseando-se no método de agregação gasosa. Com o gerador somos capazes de produzir NPs de diversos materiais e codepositá-las em matrizes dielétricas ou metálicas. Neste trabalho apresentamos o desenvolvimento da metodologia para a produção de nanopartículas de materiais magnéticos duros, usando alvos de SmCo5, Sm2Co17, Nd2Fe17B, FePt e CoPt. Investigamos a influência dos parâmetros de deposição (pressão, fluxo de gás e potência de sputtering), tipo de substrato e a existência de buffer e/ou codeposição, na obtenção das propriedades estruturais e magnéticas desejadas para esses materiais. As NPs produzidas são analisadas magneticamente pelo VSM e SQUID, sua morfologia e tamanho por TEM e SEM, a sua estequiometria pelo RBS, e a sua estrutura cristalina por XRD, a fim de obter nano-ímãs de alta anisotropia magnética. Da caracterização morfológica, através de microscopia eletrônica, encontramos para as NPs produzidas e estudadas diâmetros entre 5 e 17 nm. Através de análises de RBS obtemos para composição das NPs que as mesmas possuem estequiometria diferente dos alvos usados. Estudos estruturais e magnéticos mostram que para Sm-Co, Fe-Pt e Co-Pt é possível obter NPs cristalinas e com coercividade da ordem de 1 kOe. / In the recent years, nanoparticles (NPs) are being in all fields of technology. Their promising applications involve among others, the field of sensors and transducers, magnetic recording media, magnetic carriers of medicinal drugs. Aiming to produce NPs by physical method, a generator of nanoparticles was adapted using a system of guns \"magnetron sputtering\", based on the aggregation gas method. With the generator we are able to produce NPs with different types of material. In this work, we present the development of the methodology for the production of nanoparticles of hard magnetic materials, using targets of SmCo5, Sm2Co17, Nd2Fe17B, FePt and CoPt. We investigated the influence of the deposition parameters (pressure, gas flux and sputtering power), substrate type and the existence of the buffer and/or codeposition layers, to obtain the desired structural and magnetic properties for the nanoparticles. The produced NPs were magnetically analyzed by VSM and SQUID, the morphology and size by TEM and SEM, the stoichiometry by RBS and the crystal structure by XRD. The main objective of this work is to obtain nano-magnet with high magnetic anisotropy. Through the morphological characterization by electron microscopy, we found for NPs produced and studied have diameters between 5 and 17 nm. Through RBS analysis we have obtained the composition of the NPs, and also that they have different stoichiometry in relation to the used targets. Structural and magnetic studies have show that for Sm-Co, Fe-Pt and Co-Pt it is possible to obtain crystalline NPs with coercive field around 1 kOe.
|
55 |
Nano-émetteurs thermiques multi-spectraux / Multi-spectral thermal nano-emittersMakhsiyan, Mathilde 14 September 2017 (has links)
Les sources infrarouges sont indispensables à la détection locale de gaz dans de nombreux domaines, que ce soit pour l'environnement (détection de polluants et gaz à effets de serre) ou la défense (détection de menaces biologiques et chimiques). Elles sont également nécessaires en tant que mires de calibration pour le développement de caméras multispectrales infrarouges. Pour toutes ces applications, il est nécessaire de disposer de sources performantes, capables d'émettre un rayonnement spécifique dans une direction donnée. L'objectif de cette thèse est de concevoir des sources thermiques infrarouges compactes et à coût modéré, à spectre accordable et à pertes réduites, pouvant être juxtaposées dans un même dispositif. Pour cela, ces travaux s'organisent autour de deux axes. Le premier concerne l'étude de nouveaux matériaux nanostructurés résonants, appelés métamatériaux ou métasurfaces selon les directions de la structuration, permettant de contrôler l'émissivité spectrale et spatiale afin de maîtriser la réponse spectrale en tout point. Cette étude repose à la fois sur des simulations numériques et sur des mesures expérimentales et démontre le potentiel de ces résonateurs pour la conception de sources thermiques accordables. Cependant, ces matériaux étant composés de métal, ils présentent des pertes par absorption dans l'infrarouge qui limitent leurs performances. Le deuxième axe de recherche est alors de gérer les pertes liées à l'utilisation de métaux grâce à une ingénierie des champs dans des métamatériaux, menant à des émissions spectralement très fines. Les résultats obtenus sur ce contrôle des pertes ouvrent de nombreuses perspectives pour tout le domaine des métamatériaux. / Infrared sources are essential for local gas detection for civil applications (detection of pollutant and greenhouse gas) or military applications (detection of chemical and biological threats). They are also used as calibration targets for the development of multispectral infrared cameras. For these applications, the sources must be efficient and able to emit a specific light in a given direction. The aim of this thesis is to develop infrared thermal emitters with the following features: low cost with a compact volume, with a tunable spectral response and low losses, able to be juxtaposed on the same device. This work begins with the study of new resonant nanostructured materials, called metamaterials or metasurfaces according to the direction of the structuration, that spectrally and spatially control the emitted light up to the wavelength scale. This study relies on numerical simulations and experimental measurements and demonstrates the potential of these resonators as tunable thermal sources. However, due to the use of metals in these materials, their performance is limited by metal losses. The second study of this work is then to deal with these losses thanks to a field engineering in metamaterials, leading to very narrow spectral responses. The results on this loss control open up promising breakthroughs in the plasmonic and metamaterials field
|
56 |
Impact des nano-particules sur le comportement au jeune âge et à l’état frais des matériaux à base de ciment / Impact of nano particle on the early age and fresh state behavior of cement based materialsConte, Théau 15 June 2017 (has links)
Ce travail de thèse rentre dans le cadre de la problématique générale, en plein développement actuellement, concernant l’exploitation des nanotechnologies pour le développement d’écomatériaux, dont les propriétés sont significativement améliorées et élargies. A cause de leur surface spécifique particulièrement élevée, l’ajout d’une infime quantité (de l’ordre du % par rapport au ciment) de particules nanométriques à une formulation d’un matériau cimentaire peut entrainer des modifications significatives des propriétés du produit. Ces modifications peuvent intervenir à tout niveau de maturation du matériau en impactant les propriétés correspondantes : état frais (rhéologie), jeune âge (cinétique de prise, retrait, fissuration) et état durci (propriétés mécaniques, thermiques et durabilité).Le principal travail de cette thèse a consisté à étudier l’impact de nano particules isotropes (nano silice) et anisotropes (nano argile) sur la rhéologie des matériaux cimentaires à l’aide d’un nouveau protocole : la rhéologie oscillatoire aux grandes amplitudes. De plus, l’impact de celle-ci sur le processus d’hydratation des matériaux contenant de hauts dosages en laitier de haut fourneaux a aussi été étudié. / This PhD gets in the larger topic of the use of nano-technology to develop eco-friendly materials whose properties are improved. Due to their very high specific surface, a very low quantity (only a few percent) of nano particles into a cement-based material can induce significant changes of materials properties. These changes can take place at every ages of materials such as fresh state (rheology), young age (kinetic of hydration, shrinkage) or long term (mechanical, thermal properties and durability). During this PhD, different types of nano particles are considered: isotropic (nano silica) or anisotropic (nano clay). The main objective is to consider the impact of nano particles on rheological properties considering a new rheological protocol: large amplitude oscillation shear (LAOS). Besides, interaction between nano particles and hydration products in the case of cement based material containing high dosage of slag is also considered. This study will help to understand how nano particles change material properties at fresh state and young age. Indeed, it is at these ages that materials properties are lower when cement is replaced by other material.
|
57 |
An Investigation into Friction Stir Welding of Copper Niobium Nanolamellar CompositesCobb, Josef Benjamin 12 August 2016 (has links)
The workpiece materials used in this study are CuNb nano-layered composites (NLC) which are produced in bulk form by accumulative roll bonding (ARB). CuNb NLC panels are of interest because of their increase in strength and radiation damage tolerance when compared to either of their bulk constituents. These increased properties stem from the bi-metal interface, and the nanometer length-scale of the layers. However to be commercially viable, methods to successfully join the ARB NLC which retain the layered structure panels are needed. Friction stir welding is investigated in this study as a possible joining method that can join the material while maintaining its layered structure and hence its properties. Mechanical properties of the weld were measured at a macro level using tensile testing, and at a local level via nano-indentation. The post weld layer structure was analyzed to provide insight into the flow paths. The grain orientation of the resulting weld nugget was also analyzed using electron backscatter diffraction and transmission Kikuchi diffraction. Results from this study show that the nano-layered structure can be maintained in the CuNb NLC by control of the friction stir welding parameters. The resulting microstructure is dependent on the strain experienced during the joining process. A variation in layer thickness reduction is correlated with increasing shear strain. Above a critical level of shear strain, the NLC microstructure was observed to fragment into equiaxed grains with a higher hardness than the NLC panels. Results from this study are also used to further the understanding of the material flow and hot working conditions experienced during the friction stir welding process.
|
58 |
Green barrier materials from cellulose nano fibersSharma, Sudhir 07 January 2016 (has links)
Renewable, recyclable, and high performing barrier materials were made from
cellulose nano fibers. Various strategies to enhance performance in dry, wet and humid
conditions were proposed. These methods included thermal treatment to induce
hornification, PAE resin based cross linking, and inclusion of high aspect ratio filler
materials to form composites. Results indicated that hornification alone, even though
effective in enhancing the barrier properties comes at the cost of severe degradation of
mechanical properties. In the second case, where a cross linker was used, lower heating
temperature limited the degradation of mechanical properties. Moreover, the new bonds
included due to cross linking also modified the mechanical properties of the material and
cause significant improvement. In the case of inclusion of filler materials, improvement
of mechanical properties due to reinforcing effect was observed, and additionally the
improvement in barrier properties was observed due to increased tortuosity of the
materials. Furthermore, when the composites were made with cross linker, there was a
significant improvement in barrier and mechanical properties as compared to the barrier
material made from the pure cellulose nano fibers. In all cases the barrier materials were
found to be resistant to degradation by water, as measured by water retention value, and
surface contact angle. The resistance to water in the first case was as a result of severe
hornification of the material. Whereas in the second and third case the cross linking and
concomitant limited hornification played a significant role in water resistance. In
addition to the three methods to improve barrier properties, the use of nano fibers made
from cellulose II was also studied. Different stages of fibrillation of the starting cellulose
pulps were studied and the fibers and films made from them were characterized in detail.
Results from this study indicated that fibers made from cellulose II pulp are much harder
to fibrillate as compared to cellulose I fibers. Moreover, due to fibril aggregation it is
harder to form nano fibers from cellulose II. Even though from the perspective of better
inter and intra fibril bonding cellulose II might be favorable over cellulose I, significant
work in the formation of nano fibers from cellulose II is required before they can be used
for making barrier materials.
|
59 |
Hybrid Plasmonic Devices for Optical Communication and SensingSun, Xu January 2017 (has links)
Hybrid plasmonic (HP) waveguides, a multi-layer waveguide structure supporting a hybrid mode of surface plasmonics and Si photonics, is a compromise way to integrate plasmonic materials into Si or SOI platforms, which can guide optical waves of sub-wavelength size, and with relative low propagation loss. In this thesis, several HP waveguides and devices are developed for the purposes of optical communications and sensing. The single-slot HP ring resonator sensor with 2.6µm radius can give a quality factor (Q factor) of 1300 at the communication wavelength of 1.5µm with a device sensitivity of 102nm/RIU (refractive index unit). The Mach-Zehnder interferometer (MZI) with a 40µm double-slot HP waveguide has a device sensitivity around 474nm/RIU. The partly open silicon side-coupled double-slot HP ring resonator has a device sensitivity of 687.5nm/RIU, with a Q factor over 1000 after optimization. Further, an all-optical switching HP donut resonator with a photothermal plasmonic absorber is developed, utilizing the thermal expansion effect of silicon to shift the resonant peak of the HP resonator. The active area has a radius of 10µm to match the core size of a single-mode fiber. By applying 10mW power of the driving laser to the absorber, the resonator transmitted power can be changed by 15dB, with an average response time of 16µs. Using the same fabrication flow, and removing the oxide materials using hydrogen fluoride wet etching, a hollow HP waveguide is fabricated for liquid sensing applications. The experimentally demonstrated waveguide sensitivity is about 0.68, which is more than twice that of pure Si waveguide device. Microelectromechanical systems (MEMS) can also be integrated into vertical HP waveguides. By tuning the thickness of the air gap, over 20dB transmitted power change was experimentally demonstrated. This can be used for optical switching applications by either changing the absorption or phase of the HP devices. / <p>QC 20170427</p>
|
60 |
Synthesis and characterisation of metal dichalcogenide based nano materialsWen, Yan January 2015 (has links)
WS2, MoS2 and ZrS2 nanomaterials in various forms, such as nanoflakes, inorganic fullerene-like nanoparticles and nanorattles, were synthesised using two modified conventional techniques: solid-gas reaction and chemical vapour deposition. Both of these techniques are essentially based on reactions between metal oxides/chlorides and sulphur at a relatively low temperature in the range of 350-950°C in H2/Ar. Compared with other common techniques, these techniques are cost effective and environmentally friendly and produce well-crystallised WS2, MoS2 and ZrS2 nanomaterials with controllable sizes and morphologies, arising from the involvement of simple equipment and a H2S-free process. With the solid-gas reaction technique, the formation of WS2 and MoS2 inorganic fullerene like (IF) particles follows a so-called "template growth" mechanism, which implies that the sizes of the final products resemble their metal oxide raw materials. Therefore, because of the usage of WO3 nanoparticles and MoO3 submicron particles as precursors, nanosized WS2 (<100 nm) and submicron-sized MoS2 (approximately 500 nm) particles were generated, respectively. Further investigation of the reaction mechanism reveals that H2 is a vital factor in the formation of WS2 IF nanoparticles. Without H2, WS2 nanoflakes are instead produced, which is attributed to that the formation of WS2 IF nanoparticles based on the synergy between H2 reduction and S sulphidation. Using the CVD technique, WS2 IF nanoparticles with sizes below 100 nm were readily produced. However, the initially formed WS2 IF nanoparticles were poorly crystallised with numerous defects and disconnections, which is consistent with the results of other researchers. In this project, an additional annealing process was introduced to eliminate these defects and disconnections. After this process, well-crystallised WS2 IF nanoparticles were formed, which should exhibit improved mechanical properties and stability. In addition to the WS2 IF nanoparticles, ZrS2 was also prepared using the same route from the reaction of ZrCl4 with S. Unlike the WS2, the generated ZrS2 was in the form of nanoflakes with sizes below 30 nm. Consequently, these nanoflakes exhibited a strong quantum confinement effect and good photocatalytic performance for the decomposition of 4-NP. Based on the investigation of the WO3 sulphidation mechanism, novel W@WS2 and WS2@WS2 nanorattles were designed and first synthesised using a simple gas-solid reaction. The as-synthesised nanorattles were composed of tiny, moveable W/WS2 cores and continuous WS2 shells with much larger sizes. By simply tailoring the processing parameters, several types of nanostructures, including WS2 nanoflakes, IF nanoparticles and nanorattles (with desirable core size and shell thickness) were selectively prepared. Moreover, it was observed for the first time that the as-prepared nanorattles exhibited excellent catalytic activities, which were close to or even better than their much more expensive Au- and Pt-based counterparts.
|
Page generated in 0.0526 seconds